This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172090 #20 Apr 25 2024 09:17:24 %S A172090 1,1,1,1,2,1,1,1,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,0, %T A172090 1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1, %U A172090 0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1 %N A172090 Triangle T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2, read by rows. %H A172090 G. C. Greubel, <a href="/A172090/b172090.txt">Rows n = 0..50 of the triangle, flattened</a> %F A172090 T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2. %F A172090 From _G. C. Greubel_, Apr 29 2021: (Start) %F A172090 T(n, k) is defined by T(n, 0) = T(n, 1) = T(n, n-1) = T(n, n) = T(3, k) = 1, T(2, 1) = 2 and 0 otherwise. %F A172090 Sum_{k=0..n} T(n,k) = A151798(n). (End) %e A172090 Triangle begins as: %e A172090 1; %e A172090 1, 1; %e A172090 1, 2, 1; %e A172090 1, 1, 1, 1; %e A172090 1, 1, 0, 1, 1; %e A172090 1, 1, 0, 0, 1, 1; %e A172090 1, 1, 0, 0, 0, 1, 1; %e A172090 1, 1, 0, 0, 0, 0, 1, 1; %e A172090 1, 1, 0, 0, 0, 0, 0, 1, 1; %e A172090 1, 1, 0, 0, 0, 0, 0, 0, 1, 1; %e A172090 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1; %t A172090 (* First program *) %t A172090 f[n_]:= f[n]= If[n < 2, (-1)^n*(n+1), -3*n]; %t A172090 T[n_, k_]:= f[n-k] +f[k] -f[n]; %t A172090 Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Apr 29 2021 *) %t A172090 (* Second program *) %t A172090 T[n_, k_]:= If[n<3, Binomial[n, k], If[n==3 || k<2 || k>n-2, 1, 0]]; %t A172090 Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 29 2021 *) %o A172090 (Sage) %o A172090 def f(n): return (-1)^n*(n+1) if (n<2) else -3*n %o A172090 def T(n,k): return f(n-k) + f(k) - f(n) %o A172090 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Apr 29 2021 %Y A172090 Row sums are A151798. %K A172090 nonn,tabl,easy,less %O A172090 0,5 %A A172090 _Roger L. Bagula_, Jan 25 2010 %E A172090 Edited by _G. C. Greubel_, Apr 29 2021