A172094 The Riordan square of the little Schröder numbers A001003.
1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 45, 76, 40, 10, 1, 197, 353, 216, 72, 13, 1, 903, 1688, 1145, 458, 113, 16, 1, 4279, 8257, 6039, 2745, 829, 163, 19, 1, 20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1, 103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
Offset: 0
Examples
Triangle begins: 1 1, 1 3, 4, 1 11, 17, 7, 1 45, 76, 40, 10, 1 197, 353, 216, 72, 13, 1 903, 1688, 1345, 458, 113, 16, 1 4279, 8257, 6039, 2745, 829, 163, 19, 1 20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1 103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1 . Production matrix begins: 1, 1 2, 3, 1 0, 2, 3, 1 0, 0, 2, 3, 1 0, 0, 0, 2, 3, 1 0, 0, 0, 0, 2, 3, 1 0, 0, 0, 0, 0, 2, 3, 1 0, 0, 0, 0, 0, 0, 2, 3, 1 ... - _Philippe Deléham_, Sep 24 2014
Links
- P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 12.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices and Riordan arrays, arXiv:math/0702638 [math.CO], 2007.
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
Crossrefs
Programs
-
Maple
T := (n, k) -> local j; add((binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j, j = 0..n-k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Jan 24 2025
-
Mathematica
DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]]; nmax = 9; DELTA[Table[{1, 2}, (nmax+1)/2] // Flatten, Prepend[Table[0, {nmax}], 1], nmax] // Flatten (* Jean-François Alcover, Aug 07 2018 *) (* Function RiordanSquare defined in A321620. *) RiordanSquare[(1 + x - Sqrt[1 - 6x + x^2])/(4x), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
Formula
T(0, 0) = 1, T(n, k) = 0 if k>n, T(n, 0) = T(n-1, 0) + 2*T(n-1, 1), T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k+1) for k>0.
Sum_{0<=k<=n} T(n, k) = A109980(n).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n).
T(n, k) = Sum_{j=0..n-k} (binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j. (Cigler) - Peter Luschny, Jan 24 2025
Extensions
New name by Peter Luschny, Nov 27 2018
Comments