cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172094 The Riordan square of the little Schröder numbers A001003.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 45, 76, 40, 10, 1, 197, 353, 216, 72, 13, 1, 903, 1688, 1145, 458, 113, 16, 1, 4279, 8257, 6039, 2745, 829, 163, 19, 1, 20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1, 103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

The Riordan square is defined in A321620.
Previous name was: Triangle, read by rows, given by [1,2,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Riordan array (f(x), f(x)-1) where f(x) is the g.f. of A001003. Equals A122538*A007318.

Examples

			Triangle begins:
     1
     1,      1
     3,      4,      1
    11,     17,      7,     1
    45,     76,     40,    10,     1
   197,    353,    216,    72,    13,     1
   903,   1688,   1345,   458,   113,    16,    1
  4279,   8257,   6039,  2745,   829,   163,   19,   1
20793,  41128,  31864, 15932,  5558,  1356,  222,  22,  1
103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
.
Production matrix begins:
1, 1
2, 3, 1
0, 2, 3, 1
0, 0, 2, 3, 1
0, 0, 0, 2, 3, 1
0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 0, 2, 3, 1
... - _Philippe Deléham_, Sep 24 2014
		

Crossrefs

T(n, 0) = A001003(n) (little Schröder), A109980 (row sums).
Diagonals: A239204, A000012, A016777.

Programs

  • Maple
    T := (n, k) -> local j; add((binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j, j = 0..n-k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jan 24 2025
  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    nmax = 9;
    DELTA[Table[{1, 2}, (nmax+1)/2] // Flatten, Prepend[Table[0, {nmax}], 1], nmax] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[(1 + x - Sqrt[1 - 6x + x^2])/(4x), 11] // Flatten  (* Peter Luschny, Nov 27 2018 *)

Formula

T(0, 0) = 1, T(n, k) = 0 if k>n, T(n, 0) = T(n-1, 0) + 2*T(n-1, 1), T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k+1) for k>0.
Sum_{0<=k<=n} T(n, k) = A109980(n).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n).
T(n, k) = Sum_{j=0..n-k} (binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j. (Cigler) - Peter Luschny, Jan 24 2025

Extensions

New name by Peter Luschny, Nov 27 2018