This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172106 #18 Apr 15 2022 04:24:34 %S A172106 0,1,1,1,4,3,1,10,21,12,1,22,93,132,60,1,46,345,900,960,360,1,94,1173, %T A172106 4980,9300,7920,2520,1,190,3801,24612,71400,103320,73080,20160,1,382, %U A172106 11973,113652,480060,1048320,1234800,745920,181440,1,766,37065,502500,2968560,9170280,15981840,15845760,8346240,1814400 %N A172106 The triangle T_2(n, m), where T_2(n, m) is the number of surjective multi-valued functions from {1, 1, 2, 3, ..., n-1} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n). %C A172106 T_2(1, m) = 0 by definition. T_2(n, m) also gives the number of compositions (ordered partitions) of {1, 1, 2, 3, ..., n-1} into exactly m parts. %H A172106 G. C. Greubel, <a href="/A172106/b172106.txt">Rows n = 1..50 of the triangle, flattened</a> %H A172106 M. Griffiths and I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5. %F A172106 T_2(n, m) = Sum_{j=0..m} binomial(m,j)*binomial(j+1,2)*(-1)^(m-j)*j^(n-2), for n >= 2, with T(1, 1) = 0. %F A172106 Sum_{k=1..n} T_2(n, k) = A172109(n). %F A172106 Sum_{k=1..n} (-1)^k*T_2(n, k) = 0. - _G. C. Greubel_, Apr 13 2022 %e A172106 Triangle begins as: %e A172106 0; %e A172106 1, 1; %e A172106 1, 4, 3; %e A172106 1, 10, 21, 12; %e A172106 1, 22, 93, 132, 60; %e A172106 1, 46, 345, 900, 960, 360; %e A172106 1, 94, 1173, 4980, 9300, 7920, 2520; %e A172106 1, 190, 3801, 24612, 71400, 103320, 73080, 20160; %e A172106 1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440; %e A172106 1, 766, 37065, 502500, 2968560, 9170280, 15981840, 15845760, 8346240, 1814400; %e A172106 ... %e A172106 T_2(3, 2) = 4 since there are 4 ordered partitions of {1, 1, 2} into exactly 2 parts: (1) {{1}, {1, 2}} (2) {{1, 2}, {1}} (3) {{2}, {1, 1}} (4) {{1, 1},{2}}. %t A172106 f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 2, n <= 10, n++, Print[Table[f[2, n, m], {m, 1, n}]]] %o A172106 (Magma) %o A172106 T:= func< n,k,m | n eq 1 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >; %o A172106 [T(n,k,2): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 13 2022 %o A172106 (SageMath) %o A172106 def T(n,k,m): return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) ) - bool(n==1) %o A172106 flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 13 2022 %Y A172106 This is related to A019538, A172107 and A172108. %Y A172106 Row sums give A172109. %K A172106 nonn,tabl %O A172106 1,5 %A A172106 _Martin Griffiths_, Jan 25 2010