cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172142 Primes of form p^q+q^p+1, where p, q are also primes.

This page as a plain text file.
%I A172142 #8 Aug 13 2025 22:49:11
%S A172142 2531,94933,48989177,19088056323407827075424486287615602692671561637,
%T A172142 10027860709531471276608129899567499096303854889970269316268113271,
%U A172142 88537996291958256446260440678593208943077817551131498658191653913030830300434060998128240895267
%N A172142 Primes of form p^q+q^p+1, where p, q are also primes.
%e A172142 a(1) = 3^7+7^3+1 = 2531;
%e A172142 a(2) = 5^7+7^5+1 = 94933;
%e A172142 a(3) = 5^11+11^5+1 = 48989177;
%e A172142 a(4) = 3^97+97^3+1 = 19088056323407827075424486287615602692671561637;
%e A172142 a(5) = 23^47+47^23+1.
%t A172142 a[n_] := Block[{}, For[l = {}; i = 1, i < n, i++, For[j = i, j < n, j++, p = Prime[i]; q = Prime[j]; x = p^q + q^p + 1; If[PrimeQ[x], l = Append[l, x]]]]; Print[Sort[Union[l]]]]; a[50]
%t A172142 Union[Select[First[#]^Last[#]+Last[#]^First[#]+1&/@Tuples[Prime[Range[50]],2],PrimeQ]] (* _Harvey P. Dale_, Oct 17 2014 *)
%Y A172142 Cf. A118097.
%K A172142 nonn
%O A172142 1,1
%A A172142 Cheng Zhang (cz1(AT)rice.edu), Jan 26 2010