This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172151 #10 Aug 28 2016 03:31:27 %S A172151 0,0,0,0,1,1,1,1,2,2,3,2,3,4,4,4,5,5,5,5,7,6,7,7,8,9,9,8,9,10,10,10, %T A172151 11,11,13,12,13,13,13,13,15,15,15,15,16,17,17,17,18,18,19,18,20,20,20, %U A172151 20,21,21,23,22,23,24,24,24,25,26,25,25,27,26,27,27,28,29,30,29,30,30,31 %N A172151 Number of partitions of n into two nonsquares. %C A172151 A172152 and A172153 give record values and where they occur: a(A172153(n))=A172152(n) and a(m) < A172152(n) for m < A172153(n). %H A172151 R. Zumkeller, <a href="/A172151/b172151.txt">Table of n, a(n) for n = 0..10000</a> %F A172151 a(n) = n/2 + O(sqrt(n)). - _Charles R Greathouse IV_, Aug 28 2016 %e A172151 a(8) = #{6+2, 5+3} = 2; %e A172151 a(9) = #{7+2, 6+3} = 2; %e A172151 a(10) = #{8+2, 7+3, 5+5} = 3; %e A172151 a(11) = #{8+3, 6+5} = 2; %e A172151 a(12) = #{10+2, 7+5, 6+6} = 3; %e A172151 a(13) = #{11+2, 10+3, 8+5, 7+6} = 4. %o A172151 (PARI) a(n)=n\2 - sqrtint(n) + sum(k=sqrtint(n\2)+1,sqrtint(n), issquare(n-k^2)) \\ _Charles R Greathouse IV_, Aug 28 2016 %Y A172151 Cf. A000037, A004526, A087153. %K A172151 nonn,easy %O A172151 0,9 %A A172151 _Reinhard Zumkeller_, Jan 26 2010 %E A172151 Typo in b-file link fixed by _Reinhard Zumkeller_, Feb 10 2010