This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172171 #14 Apr 25 2022 08:03:38 %S A172171 1,1,10,1,11,19,1,12,30,28,1,13,42,58,37,1,14,55,100,95,46,1,15,69, %T A172171 155,195,141,55,1,16,84,224,350,336,196,64,1,17,100,308,574,686,532, %U A172171 260,73,1,18,117,408,882,1260,1218,792,333,82 %N A172171 (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...). %C A172171 Binomial transform of A017173. %H A172171 G. C. Greubel, <a href="/A172171/b172171.txt">Rows n = 1..50 of the triangle, flattened</a> %F A172171 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(n,1) = 1, T(2,2) = 10, T(n,k) = 0 if k < 1 or if k > n. %F A172171 Sum_{k=0..n} T(n, k) = A139634(n). %F A172171 T(2*n-1, n) = A050489(n). %e A172171 Triangle begins: %e A172171 1; %e A172171 1, 10; %e A172171 1, 11, 19; %e A172171 1, 12, 30, 28; %e A172171 1, 13, 42, 58, 37; %e A172171 1, 14, 55, 100, 95, 46; %e A172171 1, 15, 69, 155, 195, 141, 55; %e A172171 1, 16, 84, 224, 350, 336, 196, 64; %e A172171 1, 17, 100, 308, 574, 686, 532, 260, 73; %e A172171 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82; %e A172171 1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91; %e A172171 1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100; %t A172171 T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]]; %t A172171 Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 24 2022 *) %o A172171 (SageMath) %o A172171 @CachedFunction %o A172171 def T(n,k): %o A172171 if (k<1 or k>n): return 0 %o A172171 elif (k==1): return 1 %o A172171 elif (n==2 and k==2): return 10 %o A172171 else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) %o A172171 flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Apr 24 2022 %Y A172171 Cf. A007318, A017173, A050489 (central terms), A093644, A139634 (row sums). %K A172171 nonn,tabl %O A172171 1,3 %A A172171 _Mark Dols_, Jan 28 2010 %E A172171 More terms from _Philippe Deléham_, Dec 25 2013