cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172171 (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).

This page as a plain text file.
%I A172171 #14 Apr 25 2022 08:03:38
%S A172171 1,1,10,1,11,19,1,12,30,28,1,13,42,58,37,1,14,55,100,95,46,1,15,69,
%T A172171 155,195,141,55,1,16,84,224,350,336,196,64,1,17,100,308,574,686,532,
%U A172171 260,73,1,18,117,408,882,1260,1218,792,333,82
%N A172171 (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).
%C A172171 Binomial transform of A017173.
%H A172171 G. C. Greubel, <a href="/A172171/b172171.txt">Rows n = 1..50 of the triangle, flattened</a>
%F A172171 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(n,1) = 1, T(2,2) = 10, T(n,k) = 0 if k < 1 or if k > n.
%F A172171 Sum_{k=0..n} T(n, k) = A139634(n).
%F A172171 T(2*n-1, n) = A050489(n).
%e A172171 Triangle begins:
%e A172171   1;
%e A172171   1, 10;
%e A172171   1, 11,  19;
%e A172171   1, 12,  30,  28;
%e A172171   1, 13,  42,  58,   37;
%e A172171   1, 14,  55, 100,   95,   46;
%e A172171   1, 15,  69, 155,  195,  141,   55;
%e A172171   1, 16,  84, 224,  350,  336,  196,   64;
%e A172171   1, 17, 100, 308,  574,  686,  532,  260,   73;
%e A172171   1, 18, 117, 408,  882, 1260, 1218,  792,  333,   82;
%e A172171   1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125,  415,  91;
%e A172171   1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
%t A172171 T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];
%t A172171 Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 24 2022 *)
%o A172171 (SageMath)
%o A172171 @CachedFunction
%o A172171 def T(n,k):
%o A172171     if (k<1 or k>n): return 0
%o A172171     elif (k==1): return 1
%o A172171     elif (n==2 and k==2): return 10
%o A172171     else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2)
%o A172171 flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Apr 24 2022
%Y A172171 Cf. A007318, A017173, A050489 (central terms), A093644, A139634 (row sums).
%K A172171 nonn,tabl
%O A172171 1,3
%A A172171 _Mark Dols_, Jan 28 2010
%E A172171 More terms from _Philippe Deléham_, Dec 25 2013