A172183 a(n) is the smallest prime of the form p^q+n, where p and q are prime, or zero if no such prime exists.
5, 11, 7, 13, 13, 31, 11, 17, 13, 19, 19, 37, 17, 23, 19, 41, 8209, 43, 23, 29, 29, 31, 31, 73, 29, 53, 31, 37, 37, 79, 0, 41, 37, 43, 43, 61, 41, 47, 43, 67, 73, 67, 47, 53, 53, 71, 79, 73, 53, 59, 59, 61, 61, 79, 59, 83, 61, 67, 67, 109, 0, 71, 67, 73, 73, 191, 71, 193, 73, 79
Offset: 1
Keywords
Examples
a(1)=5 because 5=2^2+1 is the smallest prime of the form p^q+1. a(2)=11 because 11=3^2+2. a(3)=7, because 7=2^2+3. a(17)=8209, because 8209=2^13+17. a(31)=0, because p^q+31 cannot be a prime.
Programs
-
Mathematica
For[l = {}; n = 1, n <= 70, n++, found = False; If[Mod[n, 2] == 0, For[rm = Infinity; i = 1, i < 100, i++, For[j = 1, j < 100, j++, p = Prime[i]; q = Prime[j]; r = p^q + n; If[r >= rm, Break[], If[PrimeQ[r], rm = r; found = True]]; ]; ], (* if n is odd, r=2^q+n *) If[Mod[n, 6] == 1, r = 4 + n; If[PrimeQ[r], found = True], For[j = 1, j < 1000, j++, q = Prime[j]; r = 2^q + n; If[PrimeQ[r], found = True; rm = r; Break[]]; ]; ]; ]; If[ ! found, rm = 0]; l = Append[l, rm]; ]; l
Comments