cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172197 Decimal expansion of the abscissa x of a local maximum of the Fibonacci function F(x).

Original entry on oeis.org

1, 0, 9, 4, 5, 7, 6, 1, 0, 5, 2, 3, 1, 6, 4, 5, 6, 7, 0, 1, 0, 8, 8, 3, 0, 5, 4, 7, 9, 8, 5, 2, 9, 9, 4, 6, 3, 0, 0, 9, 9, 4, 3, 5, 9, 8, 4, 9, 5, 9, 9, 6, 9, 2, 0, 7, 3, 3, 3, 1, 7, 4, 5, 0, 9, 7, 8, 7, 4, 1, 0, 6, 7, 3, 9, 7, 7, 5, 8, 0, 4, 6, 9, 5, 1, 1, 2, 9, 6, 4, 7, 3, 6, 8, 6, 0, 3, 3, 2, 4, 2, 9, 0, 0, 8
Offset: 1

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 29 2010

Keywords

Comments

Define the Fibonacci Function F(x) and its derivative dF/dx as in A172081.
At the local maximum, dF(x)/dx = 0.
This constant x=1.0945... here satisfies this condition of vanishing first derivative.

Examples

			F(1.0945761052316...) = 1.0098243...
		

Crossrefs

Programs

  • Maple
    p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5);
    Fpr := diff(F,x) ; Fpr2 := diff(Fpr,x) ;
    Digits := 80 ; x0 := 1.0 ;
    for n from 1 to 10 do
    x0 := evalf(x0-subs(x=x0,Fpr)/subs(x=x0,Fpr2)) ;
    end do ; # R. J. Mathar, Feb 02 2010
  • Mathematica
    digits = 105; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 1}, WorkingPrecision -> digits+1]; RealDigits[x0, 10, digits][[1]] (* Jean-François Alcover, Jan 28 2014 *)

Extensions

Edited, embedded JavaScript source code of URL removed - R. J. Mathar, Feb 02 2010