This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172216 #9 Sep 08 2022 08:45:50 %S A172216 1,1,1,1,1,3,2,5,1,1,7,2,1,1,1,2,5,1,1,6,2,2,1,1,4,1,4,2,2,1,2,1,1,1, %T A172216 2,1,1,4,6,1,1,2,1,1,1,1,3,1,1,1,5,6,1,4,4,1,1,2,2,1,1,4,3,1,1,1,1,1, %U A172216 8,2,1,1,2,1,1,5,2,1,1,1,8,1,4,2,3,1,1,2,1,1,1,4,1,8,3,2,6,2,3,6,2,1,10,8,1 %N A172216 Smallest k such that sum of digits of prime(n)^k is prime. %C A172216 For all n, prime(n)^0 = 1 has nonprime sum of digits 1. %C A172216 a(n) = 1 iff prime(n) is in A046704, an additive prime. a(n) = 1 iff n is in A075177. %e A172216 prime(1) = 2; 2^1 = 2 has prime sum of digits 2. Hence a(1) = 1. %e A172216 prime(6) = 13; 13^1 = 13 has nonprime sum of digits 4; 13^2 = 169 has nonprime sum of digits 16; 13^3 = 2197 has prime sum of digits 19. Hence a(6) = 3. %t A172216 sdp[n_]:=Module[{k=1},While[!PrimeQ[Total[IntegerDigits[Prime[n]^k]]], k++]; k]; Array[sdp,110] (* _Harvey P. Dale_, Apr 13 2014 *) %o A172216 (Magma) S:=[]; for n in [1..105] do j:=1; while not IsPrime(&+Intseq(NthPrime(n)^j)) do j+:=1; end while; Append(~S, j); end for; S; %Y A172216 Cf. A046704, A075177, A172035. %K A172216 base,nonn %O A172216 1,6 %A A172216 _Klaus Brockhaus_, Jan 29 2010