cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172237 T(n,k) = T(n-1,k) + k*T(n-2,k) for k >= 1 and n >= 3 with T(0,k) = 0 and T(1,k) = T(2,k) = 1 for all k >= 1; array T(n,k), read by descending antidiagonals, with n >= 0 and k >= 1.

This page as a plain text file.
%I A172237 #18 Dec 26 2019 12:55:16
%S A172237 0,0,1,0,1,1,0,1,1,2,0,1,1,3,3,0,1,1,4,5,5,0,1,1,5,7,11,8,0,1,1,6,9,
%T A172237 19,21,13,0,1,1,7,11,29,40,43,21,0,1,1,8,13,41,65,97,85,34,0,1,1,9,15,
%U A172237 55,96,181,217,171,55,0,1,1,10,17,71,133,301,441,508,341,89,0,1,1,11
%N A172237 T(n,k) = T(n-1,k) + k*T(n-2,k) for k >= 1 and n >= 3 with T(0,k) = 0 and T(1,k) = T(2,k) = 1 for all k >= 1; array T(n,k), read by descending antidiagonals, with n >= 0 and k >= 1.
%C A172237 Transposed variant of A083856, without the top row of A083856.
%C A172237 Antidiagonal sums are (0, 1, 2, 4, 8, 16, 33, 70, 153, 345, ...) = (A110113(n) - 1: n >= 1).
%C A172237 Characteristic polynomials for columns are y^2 - y - k.
%e A172237 Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
%e A172237     0,    0,    0,    0,    0,     0,     0,     0,     0,     0, ...
%e A172237     1,    1,    1,    1,    1,     1,     1,     1,     1,     1, ...
%e A172237     1,    1,    1,    1,    1,     1,     1,     1,     1,     1, ...
%e A172237     2,    3,    4,    5,    6,     7,     8,     9,    10,    11, ...
%e A172237     3,    5,    7,    9,   11,    13,    15,    17,    19,    21, ...
%e A172237     5,   11,   19,   29,   41,    55,    71,    89,   109,   131, ...
%e A172237     8,   21,   40,   65,   96,   133,   176,   225,   280,   341, ...
%e A172237    13,   43,   97,  181,  301,   463,   673,   937,  1261,  1651, ...
%e A172237    21,   85,  217,  441,  781,  1261,  1905,  2737,  3781,  5061, ...
%e A172237    34,  171,  508, 1165, 2286,  4039,  6616, 10233, 15130, 21571, ...
%e A172237    55,  341, 1159, 2929, 6191, 11605, 19951, 32129, 49159, 72181, ...
%e A172237    ...
%p A172237 A172237 := proc(n,k)
%p A172237         if n = 0 then
%p A172237                 0;
%p A172237         elif n <=2 then
%p A172237                 1 ;
%p A172237         else
%p A172237                 procname(n-1,k)+k*procname(n-2,k) ;
%p A172237         end if;
%p A172237 end proc: # _R. J. Mathar_, Jul 05 2012
%t A172237 f[0, a_] := 0; f[1, a_] := 1;
%t A172237 f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
%t A172237 m1 = Table[f[n, a], {n, 0, 10}, {a, 1, 11}];
%t A172237 Table[Table[m1[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
%t A172237 Flatten[%]
%Y A172237 Cf. A083856, A110113, A193376.
%K A172237 nonn,tabl,easy
%O A172237 0,10
%A A172237 _Roger L. Bagula_ and _Gary W. Adamson_, Jan 29 2010
%E A172237 More terms from _Petros Hadjicostas_, Dec 26 2019