cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172253 Numbers k such that the squarefree kernel of 9^k*(9^k - 1) is 3*(9^k - 1)/4.

This page as a plain text file.
%I A172253 #20 Jun 15 2024 19:37:36
%S A172253 1,3,7,9,11,13,17,19,23,27,29,31,33,37,41,43,47,49,51,53,57,59,61,67,
%T A172253 69,71,73,77,79,81,83,87,89,91,93,97,99,101,103,107,109,111,113,119,
%U A172253 121,123,127,129,131,133,137,139,141,143,149,151,153,157,159,161
%N A172253 Numbers k such that the squarefree kernel of 9^k*(9^k - 1) is 3*(9^k - 1)/4.
%C A172253 From _Artur Jasinski_: (Start)
%C A172253 The maximal value of the squarefree kernel of a*b*9^k for every number 9^k and every a,b such that a + b = 9^k and gcd(a,b,3)=1 is never less than 3*(9^k - 1)/4 and is exactly equal to 3*(9^k - 1)/4 for exponents k in this sequence.
%C A172253 Conjecture: This sequence is infinite. (End)
%o A172253 (PARI) rad(n) = factorback(factor(n)[, 1]); \\ A007947
%o A172253 isok(k) = rad(9^k*(9^k - 1)) == 3*(9^k - 1)/4; \\ _Michel Marcus_, Dec 24 2022
%Y A172253 Cf. A007947, A054880
%K A172253 nonn,hard
%O A172253 1,2
%A A172253 _Artur Jasinski_, Jan 29 2010
%E A172253 Edited by _Jon E. Schoenfield_, Dec 23 2022
%E A172253 More terms from _Sean A. Irvine_, Jun 15 2024