cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172259 Let CK(m) denote the complete elliptic integral of the first kind. a(n) is the n-th smallest integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.

This page as a plain text file.
%I A172259 #25 Oct 22 2023 17:04:00
%S A172259 1,2,5,14,38,101,275,746,2026,5507,14969,40689,110604,300652,817255,
%T A172259 2221528,6038739,16414993,44620576,121291299,329703934,896228212,
%U A172259 2436200862,6622280533,18001224835,48932402358,133012060152,361564266077,982833574297,2671618645410
%N A172259 Let CK(m) denote the complete elliptic integral of the first kind. a(n) is the n-th smallest integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.
%C A172259 F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt and the complete elliptic integral CK is defined by CK(k) = F(1,sqrt(1-k^2)). We calculate the values of CK(k) with k = 1/p, p = 1,2,3, ... and we propose a very interesting property: a(n+1)/a(n) tends toward e = 2.7182818... when n tends to infinity. For example, a(8) / a(7) = 2.718281581; a(9) / a(8) = 2.7182817562.
%D A172259 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, Eq. 16.22.1 and 16.22.2.
%D A172259 M. Abramowitz and I. Stegun, "Elliptic Integrals", Chapter 17 of Handbook of Mathematical Functions. Dover Publications Inc., New York, 1046 p., (1965).
%D A172259 A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
%H A172259 A. Cayley, <a href="http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=cayl005">An Elementary Treatise on Elliptic Functions</a>, G. Bell and Sons, London, 1895, p. 56.
%H A172259 F. Clarke, <a href="http://www-maths.swan.ac.uk/staff/fwc/Gregynog-slides.pdf">The Taylor Series Coefficients of the Jacobi Elliptic Functions</a>, slides. [broken link]
%F A172259 F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt. CK is defined by CK(k) = F(1,sqrt(1-k^2)). a(n) is the n-th integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.
%e A172259 a(3) = 38 because floor(CK(1/37)) = 4 and floor(CK(1/38)) = 5.
%p A172259 a0:=1:for p from 1 to 1000 do:a:= evalf(EllipticCK(1/p)):if floor(a)=a0+1 then print(p):a0:=floor(a):else fi:od:
%Y A172259 Cf. elliptic functions: A001936, A002318, A001937, A001934, A001938, A002754, A001939, A001940, A001941, A002753, A006089, A004005.
%K A172259 nonn
%O A172259 1,2
%A A172259 _Michel Lagneau_, Jan 30 2010