This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172292 #43 Sep 08 2022 08:45:50 %S A172292 9,15,25,21,35,49,27,45,63,81,33,55,77,99,121,39,65,91,117,143,169,45, %T A172292 75,105,135,165,195,225,51,85,119,153,187,221,255,289,57,95,133,171, %U A172292 209,247,285,323,361,63,105,147,189,231,273,315,357,399,441,69,115,161 %N A172292 Triangle read by rows: T(n, k) = (2*n+1)*(2*k+1), n>=1, 1<=k<=n. %C A172292 A number m belongs to this sequence if and only if it is odd and composite. %C A172292 First column: A016945(n, n>=1), second column: A017329(n, n>=2), third column: A147587(n, n>=3). - _Vincenzo Librandi_, Nov 20 2012 %C A172292 The number of occurrences of m corresponds to the number of nontrivial factorizations of m, i.e., A072670(m-1). - _Daniel Forgues_, Apr 22 2014 %H A172292 Vincenzo Librandi, <a href="/A172292/b172292.txt">Rows n = 1..100, flattened</a> %H A172292 OEIS Wiki, <a href="/wiki/Odd_composites">Odd composites</a> %F A172292 T(n, k) = A144562(n,k)*2+3 read by rows. (Was old name.) %F A172292 T(n, k) = 2*A083487(n, k)+1. - _Daniel Forgues_, Sep 20 2011 %e A172292 Triangle begins: %e A172292 9; %e A172292 15, 25; %e A172292 21, 35, 49; %e A172292 27, 45, 63, 81; %e A172292 33, 55, 77, 99, 121; %e A172292 39, 65, 91, 117, 143, 169; %e A172292 45, 75, 105, 135, 165, 195, 225; %e A172292 51, 85, 119, 153, 187, 221, 255, 289; %e A172292 57, 95, 133, 171, 209, 247, 285, 323, 361; %e A172292 63, 105, 147, 189, 231, 273, 315, 357, 399, 441; etc. %e A172292 Number of occurrences: %e A172292 63 = 9*7 = 21*3 has two nontrivial factorizations, thus occurs twice. %t A172292 t[n_,k_]:= 4 n*k + 2n + 2k + 1; Table[t[n, k], {n,15}, {k, n}]//Flatten (* _Vincenzo Librandi_, Nov 20 2012 *) %o A172292 (Magma) [4*n*k + 2*n + 2*k + 1: k in [1..n], n in [1..11]]; // _Vincenzo Librandi_, Nov 20 2012 %Y A172292 Cf. A144562, A083487, A016945, A017329, A147587. %K A172292 nonn,tabl,easy %O A172292 1,1 %A A172292 _Vincenzo Librandi_, Nov 24 2010