This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172315 #5 Jan 11 2016 18:24:27 %S A172315 8191,27647,62207,139967,314927,472391,1062881 %N A172315 Primes of the form 2^i*3^j - 1 with i + j = 13. %C A172315 Note that bases 2 = prime(1), 3 = prime(2) %C A172315 13 = prime(2 x 3) = prime(prime(1) x prime(2)) %C A172315 Smallest term 8191 is the 5th Mersenne prime %C A172315 It is a finite "FUN" sequence with 7 = prime(4) terms %D A172315 Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983 %e A172315 8191 = 2^13 - 1 = prime(1028) %e A172315 27647 = 2^10 x 3^3 - 1 = prime(3016) = prime(2^3 x 13 x 29) %e A172315 62207 = 2^8 x 3^5 - 1 = prime(6253) = prime(13^ 2 x 37) %e A172315 139967 = 2^6 x 3^7 - 1 = prime(13005) %e A172315 314927 = 2^4 x 3^9 - 1 = prime(27191), index is prime(2978) %e A172315 472391 = 2^3 x 3^10 - 1 = prime(39419), index is prime(4150) %e A172315 1062881 = 2 x 3^12 - 1 = prime(83024) %t A172315 Select[Union[Flatten[{2^#[[1]] 3^#[[2]]-1,2^#[[2]] 3^#[[1]]-1}&/@ Table[ {n,13-n},{n,0,13}]]],PrimeQ] (* _Harvey P. Dale_, Jan 11 2016 *) %Y A172315 Cf. A005105, A168385, A168349 %K A172315 fini,full,nonn %O A172315 1,1 %A A172315 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Jan 31 2010