cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172342 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.

This page as a plain text file.
%I A172342 #5 Jul 05 2012 11:38:05
%S A172342 1,1,1,1,5,1,1,26,26,1,1,135,702,135,1,1,701,18927,18927,701,1,1,3640,
%T A172342 510328,2649780,510328,3640,1,1,18901,13759928,370988828,370988828,
%U A172342 13759928,18901,1,1,98145,371007729,51941082060,269708877956
%N A172342 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.
%C A172342 Start from the generalized Fibonacci sequence A052918 and its partial products c(n) = 1, 1, 5, 130, 17550, 12302550, 44781282000,... Then t(n,k) = c(n)/(c(k)*c(n-k)).
%C A172342 Row sums are 1, 2, 7, 54, 974, 39258, 3677718, 769535316, 374333253826, 406720191959532,...
%e A172342 1;
%e A172342 1, 1;
%e A172342 1, 5, 1;
%e A172342 1, 26, 26, 1;
%e A172342 1, 135, 702, 135, 1;
%e A172342 1, 701, 18927, 18927, 701, 1;
%e A172342 1, 3640, 510328, 2649780, 510328, 3640, 1;
%e A172342 1, 18901, 13759928, 370988828, 370988828, 13759928, 18901, 1;
%e A172342 1, 98145, 371007729, 51941082060, 269708877956, 51941082060, 371007729, 98145, 1;
%t A172342 Clear[f, c, a, t];
%t A172342 f[0, a_] := 0; f[1, a_] := 1;
%t A172342 f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a];
%t A172342 c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
%t A172342 t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
%t A172342 Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
%t A172342 Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
%Y A172342 Cf. A010048 (m=1), A099927 (m=2), A172339 (m=3), A172343 (m=6).
%K A172342 nonn,tabl,easy
%O A172342 0,5
%A A172342 _Roger L. Bagula_, Feb 01 2010