This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172359 #15 May 10 2025 08:59:37 %S A172359 1,1,1,1,1,1,1,1,1,1,1,5,5,5,1,1,5,25,25,5,1,1,9,45,225,45,9,1,1,25, %T A172359 225,1125,1125,225,25,1,1,29,725,6525,6525,6525,725,29,1,1,61,1769, %U A172359 44225,79605,79605,44225,1769,61,1,1,129,7869,228201,1141005,2053809,1141005,228201,7869,129,1 %N A172359 Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments. %C A172359 Start from the sequence 0, 1, 1, 1, 5, 5, 9, 25, 29, 61, 129, 177, 373, 693, 1081, 2185, 3853, ..., f(n) = f(n-2) + 4*f(n-3) and its partial products c(n) = 1, 1, 1, 1, 5, 25, 225, 5625, 163125, 9950625, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))). %H A172359 G. C. Greubel, <a href="/A172359/b172359.txt">Rows n = 0..50 of the triangle, flattened</a> %F A172359 T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q))), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q) = 0, f(1,q) = f(2,q) = 1, and q = 4. - _G. C. Greubel_, May 09 2021 %e A172359 Triangle begins as: %e A172359 1; %e A172359 1, 1; %e A172359 1, 1, 1; %e A172359 1, 1, 1, 1; %e A172359 1, 5, 5, 5, 1; %e A172359 1, 5, 25, 25, 5, 1; %e A172359 1, 9, 45, 225, 45, 9, 1; %e A172359 1, 25, 225, 1125, 1125, 225, 25, 1; %e A172359 1, 29, 725, 6525, 6525, 6525, 725, 29, 1; %e A172359 1, 61, 1769, 44225, 79605, 79605, 44225, 1769, 61, 1; %e A172359 1, 129, 7869, 228201, 1141005, 2053809, 1141005, 228201, 7869, 129, 1; %t A172359 f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]]; %t A172359 c[n_, q_]:= Product[f[j, q], {j,n}]; %t A172359 T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])]; %t A172359 Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 09 2021 *) %o A172359 (Sage) %o A172359 @CachedFunction %o A172359 def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q) %o A172359 def c(n,q): return product( f(j,q) for j in (1..n) ) %o A172359 def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q))) %o A172359 flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 09 2021 %Y A172359 Cf. A172353 (q=1), A172358 (q=2), this sequence (q=4), A172360 (q=5). %K A172359 nonn,tabl,less %O A172359 0,12 %A A172359 _Roger L. Bagula_, Feb 01 2010 %E A172359 Definition corrected to give integral terms by _G. C. Greubel_, May 09 2021