This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172363 #14 May 09 2021 09:50:05 %S A172363 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,3,6,6,6,3,1,1,4,12,24,24, %T A172363 12,4,1,1,5,20,60,120,60,20,5,1,1,7,35,140,420,420,140,35,7,1,1,10,70, %U A172363 350,1400,2100,1400,350,70,10,1 %N A172363 Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of A003269. %H A172363 G. C. Greubel, <a href="/A172363/b172363.txt">Rows n = 0..50 of the triangle, flattened</a> %F A172363 T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*f(n-1, q) + f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 1. - _G. C. Greubel_, May 08 2021 %e A172363 Triangle begins as: %e A172363 1; %e A172363 1, 1; %e A172363 1, 1, 1; %e A172363 1, 1, 1, 1; %e A172363 1, 1, 1, 1, 1; %e A172363 1, 2, 2, 2, 2, 1; %e A172363 1, 3, 6, 6, 6, 3, 1; %e A172363 1, 4, 12, 24, 24, 12, 4, 1; %e A172363 1, 5, 20, 60, 120, 60, 20, 5, 1; %e A172363 1, 7, 35, 140, 420, 420, 140, 35, 7, 1; %e A172363 1, 10, 70, 350, 1400, 2100, 1400, 350, 70, 10, 1; %t A172363 f[n_, q_]:= f[n, q]= If[n==0,0,If[n<4, 1, q*f[n-1, q] + f[n-4, q]]]; %t A172363 c[n_, q_]:= Product[f[j, q], {j,n}]; %t A172363 T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])]; %t A172363 Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 08 2021 *) %o A172363 (Sage) %o A172363 @CachedFunction %o A172363 def f(n,q): return 0 if (n==0) else 1 if (n<4) else q*f(n-1, q) + f(n-4, q) %o A172363 def c(n,q): return product( f(j,q) for j in (1..n) ) %o A172363 def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q))) %o A172363 flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 08 2021 %Y A172363 Cf. A003269 (f(n,1)), A172363 (q=1), A172364 (q=3). %K A172363 nonn,tabl %O A172363 0,17 %A A172363 _Roger L. Bagula_, Feb 01 2010 %E A172363 Definition corrected to give integral terms, _G. C. Greubel_, May 08 2021