This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172375 #11 Jan 05 2024 15:01:19 %S A172375 1,1,1,1,6,1,1,48,48,1,1,352,2816,352,1,1,2640,154880,154880,2640,1,1, %T A172375 19680,8659200,63500800,8659200,19680,1,1,146944,481976320, %U A172375 26508697600,26508697600,481976320,146944,1,1,1096704,26859012096,11012194959360,82591462195200,11012194959360,26859012096,1096704,1 %N A172375 Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 2, read by rows. %H A172375 G. C. Greubel, <a href="/A172375/b172375.txt">Rows n = 1..30 of the triangle, flattened</a> %F A172375 T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 2. %F A172375 T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k,q)), where c(n, q) = Product_{j=1..n} f(j, q), and f(n, q) = (-I*sqrt(q))^(n-1)*ChebyshevU(n-1, i*sqrt(q)/2). - _G. C. Greubel_, May 07 2021 %e A172375 Triangle begins as: %e A172375 1; %e A172375 1, 1; %e A172375 1, 6, 1; %e A172375 1, 48, 48, 1; %e A172375 1, 352, 2816, 352, 1; %e A172375 1, 2640, 154880, 154880, 2640, 1; %e A172375 1, 19680, 8659200, 63500800, 8659200, 19680, 1; %e A172375 1, 146944, 481976320, 26508697600, 26508697600, 481976320, 146944, 1; %t A172375 f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2]; %t A172375 c[n_, q_]:= Product[f[j, q], {j,n}]; %t A172375 T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]); %t A172375 Table[T[n, k, 2], {n,12}, {k, n}]//Flatten (* modified by _G. C. Greubel_, May 07 2021 *) %o A172375 (Sage) %o A172375 @CachedFunction %o A172375 def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2) %o A172375 def c(n,q): return product( f(j,q) for j in (1..n) ) %o A172375 def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)) %o A172375 flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, May 07 2021 %Y A172375 Cf. A002605, A030195, this sequence (q=2), A172376 (q=3). %K A172375 nonn,tabl %O A172375 1,5 %A A172375 _Roger L. Bagula_, Feb 01 2010 %E A172375 Edited by _G. C. Greubel_, May 07 2021