This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172398 #27 Jun 04 2023 18:56:58 %S A172398 0,1,1,1,0,0,0,0,1,2,1,0,1,1,0,1,1,1,1,2,1,0,0,1,1,2,1,0,0,1,0,1,1,0, %T A172398 0,2,1,1,0,0,1,2,0,1,1,0,0,3,1,0,0,1,0,1,0,0,1,2,0,1,1,1,0,2,1,0,0 %N A172398 Number of partitions of n into the sum of two refactorable numbers (A033950). %H A172398 R. J. Mathar, <a href="/A172398/b172398.txt">Table of n, a(n) for n = 1..1000</a> %F A172398 a(n) = Sum_{i=1..floor(n/2)} ((1+floor(i/d(i)) - ceiling(i/d(i))) * (1 + floor((n-i)/d(n-i)) - ceiling((n-i)/d(n-i)))). - _Wesley Ivan Hurt_, Jan 12 2013 %e A172398 a(10)=2 because 10 = 1(refactorable) + 9(refactorable) = 2(refactorable) + 8(refactorable). %p A172398 with(numtheory); %p A172398 a:=n-> sum( ((1 + floor(i/tau(i)) - ceil(i/tau(i))) * (1 + floor((n-i)/tau(n-i)) - ceil((n-i)/tau(n-i))) ), i=1..floor(n/2)); %p A172398 # alternative %p A172398 isA033950 := proc(n) %p A172398 if modp(n,numtheory[tau](n)) = 0 then %p A172398 true; %p A172398 else %p A172398 false; %p A172398 end if; %p A172398 end proc: %p A172398 A172398 := proc(n) %p A172398 local a; %p A172398 a := 0 ; %p A172398 for i from 1 to n/2 do %p A172398 if isA033950(i) and isA033950(n-i) then %p A172398 a := a+1 ; %p A172398 end if; %p A172398 end do: %p A172398 a ; %p A172398 end proc: # _R. J. Mathar_, Jul 21 2015 %t A172398 a[n_] := IntegerPartitions[n, {2}, Select[Range[n], Divisible[#, DivisorSigma[0, #]]&]] // Length; %t A172398 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 04 2023 *) %Y A172398 Cf. A033950. %K A172398 nonn %O A172398 1,10 %A A172398 _Juri-Stepan Gerasimov_, Nov 20 2010 %E A172398 Corrected by _D. S. McNeil_, Nov 20 2010