This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172434 #16 Jul 17 2020 13:03:05 %S A172434 1,3,51,1785,67635,2973753,146591529,7735733883,430208938035, %T A172434 24954576411225,1496639801457801,92241539987122683, %U A172434 5816057121183700521,373854785336483200155,24431647104881328618315,1619654401178752389082785 %N A172434 G.f.: Sum_{n>=0} a(n)*x^n/n!^4 = [ Sum_{n>=0} x^n/n!^4 ]^3. %H A172434 Seiichi Manyama, <a href="/A172434/b172434.txt">Table of n, a(n) for n = 0..500</a> %F A172434 a(n) = Sum_{k=0..n} C(n,k)^4 * Sum_{j=0..k} C(k,j)^4 = Sum_{k=0..n} C(n,k)^4 * A005260(k). %e A172434 G.f.: A(x) = 1 + 3*x + 51*x^2/2!^4 + 1785*x^3/3!^4 + 67635*x^4/4!^4 +... %e A172434 A(x)^(1/3) = 1 + x + x^2/2!^4 + x^3/3!^4 + x^4/4!^4 +... %o A172434 (PARI) {a(n)=if(n<0, 0, n!^4*polcoeff(sum(m=0, n, x^m/m!^4+x*O(x^n))^3, n))} %o A172434 (PARI) {a(n)=sum(k=0, n, binomial(n, k)^4*sum(j=0, k, binomial(k, j)^4))} %Y A172434 Cf. A002893, A005260, A141057, A180350, A336270. %K A172434 nonn %O A172434 0,2 %A A172434 _Paul D. Hanna_, Jan 20 2011