This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172454 #29 Feb 16 2025 08:33:11 %S A172454 5,11,17,41,101,227,347,641,1091,1277,1427,1481,1487,1607,2687,3527, %T A172454 3917,4001,4127,4637,4787,4931,8231,9461,10331,11777,12107,13901, %U A172454 14627,16061,19421,20747,21011,21557,22271,23741,25577,26681,26711,27737 %N A172454 Primes p such that (p, p+2, p+6, p+12) is a prime quadruple. %C A172454 The four primes do not have to be consecutive. - _Harvey P. Dale_, Jul 23 2011 %D A172454 R. K. Guy, Unsolved Problems in Number Theory, E30. %D A172454 P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800. %H A172454 Charles R Greathouse IV, <a href="/A172454/b172454.txt">Table of n, a(n) for n = 1..10000</a> %H A172454 G. E. Andrews, <a href="http://www.jstor.org/stable/2318498">MacMahon's prime numbers of measurement</a>, Amer. Math. Monthly, 82 (1975), 922-923. %H A172454 R. L. Graham and C. B. A. Peck, <a href="https://www.jstor.org/stable/2315138">Problem E1910</a>, Amer. Math. Monthly, 75 (1968), 80-81. %H A172454 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>. %e A172454 The first two terms correspond to the quadruples (5,7,11,17) and (11,13,17,23). %p A172454 for n from 1 by 2 to 110000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) then print(n) else fi;od; %t A172454 Select[Prime[Range[3100]],And@@PrimeQ[{#+2,#+6,#+12}]&] (* _Harvey P. Dale_, Jul 23 2011 *) %o A172454 (PARI) forprime(p=2,1e4,if(isprime(p+2)&&isprime(p+6)&&isprime(p+12), print1(p", "))) \\ _Charles R Greathouse IV_, Mar 04 2012 %Y A172454 Cf. A073648, A098412. %K A172454 nonn %O A172454 1,1 %A A172454 _Michel Lagneau_, Feb 03 2010