A172468 Numbers such that A166986(n)/2 - A167389(n) = 1.
50, 59, 111, 120, 181, 242, 251, 303, 312, 373, 434, 495, 504, 556, 565, 626, 687, 696, 748, 757, 818, 879, 940, 949, 1001, 1010, 1071, 1132, 1141, 1193, 1202, 1254, 1263, 1324, 1385, 1394, 1446, 1455, 1516, 1577, 1638, 1647, 1699, 1708, 1769, 1830, 1839
Offset: 1
Keywords
Links
- R. M. Corless et al. On the Lambert W function., Adv. Comput. Math. 5 (1996), pp. 329-359.
- Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation [Dead link ?]
Programs
-
Maple
[ListTools[SearchAll](1, [seq(round(evalf(floor((n+2)/ln(2))-2-(argument(exp(-(ln(2)+LambertW(n, -ln(sqrt(2))))/ln(2)))*ln(2)+Im(LambertW(n,-ln(sqrt(2)))))/(2*Pi*ln(2)))), n = 1 .. 10000)])]
-
Mathematica
Select[Range@1888,Floor[(#+2)/Log@2]==Floor[Im@LambertW[#,-Log@2/2]/Log@4/Pi+7/2]&] (* Or, accelerated per comment: *) Module[{x=0,m,z=1},Flatten@Table[m=Mod[x/Log@2,1];If[m<145/2-201/Log@16||(m
Travis Scott, Oct 16 2022 *)
Formula
a(n) ~ c*n, where c = 4*log(2)/(7 - 10*log(2)) = 40.4590949.... - Travis Scott, Oct 16 2022
Comments