This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172477 #26 Oct 13 2024 09:01:36 %S A172477 1,2,10,117,4006,451206,158753814,187497290034,706152947468301 %N A172477 The number of ways to dissect an n X n square into polyominoes of size n. %H A172477 Jiahua Chen, Aneesha Manne, Rebecca Mendum, Poonam Sahoo, Alicia Yang, <a href="https://arxiv.org/abs/1911.09792">Minority Voter Distributions and Partisan Gerrymandering</a>, arXiv:1911.09792 [cs.CY], 2019. %H A172477 Johan de Ruiter, <a href="https://theses.liacs.nl/189">On Jigsaw Sudoku Puzzles and Related Topics</a>, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010. %H A172477 Christopher Donnay and Matthew Kahle, <a href="https://arxiv.org/abs/2311.13550">Asymptotics of Redistricting the n X n grid</a>, arXiv:2311.13550 [math.CO], 2023. %H A172477 R. S. Harris, <a href="http://www.bumblebeagle.org/polyominoes/tilingcounting/counting_9x9_tilings.pdf">Counting Nonomino Tilings and Other Things of that Ilk</a>, G4G9 Gift Exchange book, 2010. %H A172477 R. S. Harris, <a href="http://www.bumblebeagle.org/polyominoes/tilingcounting">Counting Polyomino Tilings</a> [From Bob Harris (me13013(AT)gmail.com), Mar 13 2010] %F A172477 a(3) = A167243(3). a(4) = A167248(4). a(5) = A167251(5). a(6) = A167254(6). a(7) = A167255(7). a(8) = A167258(8). - _R. J. Mathar_, Oct 13 2024 %e A172477 A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally. %Y A172477 Intersects with A167251, A167254, A167255, A167258. %Y A172477 Diagonal of A348452. %K A172477 nonn %O A172477 1,2 %A A172477 _Johan de Ruiter_, Feb 04 2010 %E A172477 a(9) from Bob Harris (me13013(AT)gmail.com), Mar 13 2010