cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172487 Lesser of twin primes in A172240.

Original entry on oeis.org

3, 17, 29, 41, 71, 101, 137, 149, 191, 197, 239, 269, 281, 311, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1427, 1451, 1481, 1607, 1667, 1697, 1721, 1787, 1871, 1877, 1931, 1949, 1997
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 21 2010

Keywords

Comments

For a(n) > 3, the first differences of the sequence are divisible by 6. (Is this a conjecture or a theorem?)

Crossrefs

Programs

  • Maple
    isA001359 := proc(p) isprime(p) and isprime(p+2) ; end proc:
    isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
    isA181669 := proc(p) if isprime(p) and (p mod 6)= 5 then if numtheory[bigomega](p-1) =2 and  isA000430(p+2) then true; else false; end if;else false; end if ; end proc:
    isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
    isA172487 := proc(n) isA172240(n) and isA001359(n) ; end proc:
    for n from 2 to 2000 do if isA172487(n) then printf("%d,",n) ; end if;end do:

Formula

A001359 INTERSECT A172240.