cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172497 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10), read by rows.

This page as a plain text file.
%I A172497 #10 Apr 21 2021 17:29:16
%S A172497 1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,2,2,1,1,1,2,2,4,2,2,1,1,3,6,6,6,6,
%T A172497 3,1,1,2,6,12,6,12,6,2,1,1,4,8,24,24,24,24,8,4,1,1,3,12,24,36,72,36,
%U A172497 24,12,3,1,1,5,15,60,60,180,180,60,60,15,5,1,1,5,25,75,150,300,450,300,150,75,25,5,1
%N A172497 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10), read by rows.
%H A172497 G. C. Greubel, <a href="/A172497/b172497.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A172497 T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10).
%e A172497 The triangle begins as:
%e A172497   1;
%e A172497   1, 1;
%e A172497   1, 1,  1;
%e A172497   1, 1,  1,  1;
%e A172497   1, 2,  2,  2,  1;
%e A172497   1, 1,  2,  2,  1,  1;
%e A172497   1, 2,  2,  4,  2,  2,  1;
%e A172497   1, 3,  6,  6,  6,  6,  3,  1;
%e A172497   1, 2,  6, 12,  6, 12,  6,  2,  1;
%e A172497   1, 4,  8, 24, 24, 24, 24,  8,  4, 1;
%e A172497   1, 3, 12, 24, 36, 72, 36, 24, 12, 3, 1;
%t A172497 b:= Drop[CoefficientList[Series[1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10), {x,0,100}], x], 10];
%t A172497 c[n_]:= Product[b[[j]], {j,n}];
%t A172497 T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])];
%t A172497 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 20 2021 *)
%o A172497 (Magma)
%o A172497 R<x>:= PowerSeriesRing(Integers(), 100);
%o A172497 b:= Coefficients(R!( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ));
%o A172497 c:= func< n | (&*[b[j]: j in [10..n+10]]) >;
%o A172497 T:= func< n,k | Round(c(n)/(c(k)*c(n-k))) >;
%o A172497 [T(n,k): k in [0..n], n in [1..12]]; // _G. C. Greubel_, Apr 20 2021
%o A172497 (Sage)
%o A172497 @CachedFunction
%o A172497 def A029826_list(prec):
%o A172497     P.<x> = PowerSeriesRing(ZZ, prec)
%o A172497     return P( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ).list()
%o A172497 b=A029826_list(130)
%o A172497 def c(n): return product(b[j] for j in (9..n+9))
%o A172497 def T(n,k): return round(c(n)/(c(k)*c(n-k)))
%o A172497 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 20 2021
%Y A172497 Cf. A029826.
%K A172497 nonn,tabl,easy,less
%O A172497 0,12
%A A172497 _Roger L. Bagula_, Feb 05 2010
%E A172497 Definition corrected and edited by _G. C. Greubel_, Apr 20 2021