This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172497 #10 Apr 21 2021 17:29:16 %S A172497 1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,2,2,1,1,1,2,2,4,2,2,1,1,3,6,6,6,6, %T A172497 3,1,1,2,6,12,6,12,6,2,1,1,4,8,24,24,24,24,8,4,1,1,3,12,24,36,72,36, %U A172497 24,12,3,1,1,5,15,60,60,180,180,60,60,15,5,1,1,5,25,75,150,300,450,300,150,75,25,5,1 %N A172497 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10), read by rows. %H A172497 G. C. Greubel, <a href="/A172497/b172497.txt">Rows n = 0..50 of the triangle, flattened</a> %F A172497 T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10). %e A172497 The triangle begins as: %e A172497 1; %e A172497 1, 1; %e A172497 1, 1, 1; %e A172497 1, 1, 1, 1; %e A172497 1, 2, 2, 2, 1; %e A172497 1, 1, 2, 2, 1, 1; %e A172497 1, 2, 2, 4, 2, 2, 1; %e A172497 1, 3, 6, 6, 6, 6, 3, 1; %e A172497 1, 2, 6, 12, 6, 12, 6, 2, 1; %e A172497 1, 4, 8, 24, 24, 24, 24, 8, 4, 1; %e A172497 1, 3, 12, 24, 36, 72, 36, 24, 12, 3, 1; %t A172497 b:= Drop[CoefficientList[Series[1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10), {x,0,100}], x], 10]; %t A172497 c[n_]:= Product[b[[j]], {j,n}]; %t A172497 T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])]; %t A172497 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 20 2021 *) %o A172497 (Magma) %o A172497 R<x>:= PowerSeriesRing(Integers(), 100); %o A172497 b:= Coefficients(R!( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) )); %o A172497 c:= func< n | (&*[b[j]: j in [10..n+10]]) >; %o A172497 T:= func< n,k | Round(c(n)/(c(k)*c(n-k))) >; %o A172497 [T(n,k): k in [0..n], n in [1..12]]; // _G. C. Greubel_, Apr 20 2021 %o A172497 (Sage) %o A172497 @CachedFunction %o A172497 def A029826_list(prec): %o A172497 P.<x> = PowerSeriesRing(ZZ, prec) %o A172497 return P( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ).list() %o A172497 b=A029826_list(130) %o A172497 def c(n): return product(b[j] for j in (9..n+9)) %o A172497 def T(n,k): return round(c(n)/(c(k)*c(n-k))) %o A172497 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 20 2021 %Y A172497 Cf. A029826. %K A172497 nonn,tabl,easy,less %O A172497 0,12 %A A172497 _Roger L. Bagula_, Feb 05 2010 %E A172497 Definition corrected and edited by _G. C. Greubel_, Apr 20 2021