cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172510 a(n) = binomial(n + 4, 4) * 8^n.

This page as a plain text file.
%I A172510 #18 Aug 29 2022 04:41:29
%S A172510 1,40,960,17920,286720,4128768,55050240,692060160,8304721920,
%T A172510 95965675520,1074815565824,11725260718080,125069447659520,
%U A172510 1308418837053440,13458022323978240,136374626216312832,1363746262163128320,13477021884906209280,131775325096860712960
%N A172510 a(n) = binomial(n + 4, 4) * 8^n.
%H A172510 Vincenzo Librandi, <a href="/A172510/b172510.txt">Table of n, a(n) for n = 0..138</a>
%H A172510 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (40,-640,5120,-20480,32768).
%F A172510 G.f.: 1 / (1-8*x)^5. - _R. J. Mathar_, Feb 11 2010
%F A172510 a(n) = (8^(-1 + n)*(1 + n)*(2 + n)*(3 + n)*(4 + n)) / 3. - _Colin Barker_, Jul 24 2017
%F A172510 From _Amiram Eldar_, Aug 29 2022: (Start)
%F A172510 Sum_{n>=0} 1/a(n) = 4400/3 - 10976*log(8/7).
%F A172510 Sum_{n>=0} (-1)^n/a(n) = 23328*log(9/8) - 8240/3. (End)
%t A172510 Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
%o A172510 (Magma) [Binomial(n + 4, 4)*8^n: n in [0..30]]; // _Vincenzo Librandi_, Jun 06 2011
%o A172510 (PARI) Vec(1 / (1-8*x)^5 + O(x^30)) \\ _Colin Barker_, Jul 24 2017
%Y A172510 Cf. A081138, A140802, A140406, A053107, A141054.
%K A172510 nonn,easy
%O A172510 0,2
%A A172510 _Zerinvary Lajos_, Feb 05 2010