This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172968 #45 Mar 20 2025 16:10:42 %S A172968 1,2,13,89,610,4181,28657,196418,1346269,9227465,63245986,433494437, %T A172968 2971215073,20365011074,139583862445,956722026041,6557470319842, %U A172968 44945570212853,308061521170129,2111485077978050,14472334024676221 %N A172968 a(n) = 7*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=2. %H A172968 G. C. Greubel, <a href="/A172968/b172968.txt">Table of n, a(n) for n = 0..1000</a> %H A172968 Marta Na Chen, Wenchang Chu, <a href="http://doi.org/10.3390/sym17020209">Four classes of symmetric sums over cyclically binomial products</a>, Symmetry 17 (2025) no 2 %H A172968 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-1). %F A172968 a(n) = (1/10)*((5+sqrt(5))*((7-3*sqrt(5))/2)^n + ((5-sqrt(5))*((7+3*sqrt(5))/2)^n)). %F A172968 a(n) = sqrt(1 - 2*F(2n+1)*F(2n+2) + 5*(F(2n+1)*F(2n+2))^2), where F = A000045. %F A172968 a(n) = sqrt(1 - 2*A081016(n) + 5*A081016(n)^2). %F A172968 a(n) = A033891(n-1), n>0. - _R. J. Mathar_, Feb 08 2010 %F A172968 a(n) = (Lucas(4*n) - Fibonacci(4*n))/2, where Lucas = A000032. - _Gary Detlefs_, Nov 28 2010 %F A172968 G.f.: (1 - 5*x)/(1 - 7*x + x^2). - _Bruno Berselli_, Mar 29 2016 %F A172968 a(n) = Fibonacci(4*n-1). - _G. C. Greubel_, Jul 15 2019 %F A172968 a(n) = (a(n-1)^2 + 9)/a(n-2). - _Klaus Purath_, Aug 30 2020 %p A172968 with(combinat):F:= n-> fibonacci(n):L:=n-> 2*F(n+1)-F(n): %p A172968 seq(1/2*(L(4*n)-F(4*n)), n=0..20); # _Gary Detlefs_, Nov 28 2010 %t A172968 Table[Sqrt[1-2m+5m^2]/.m ->Fibonacci[2n+1]Fibonacci[2n+2], {n, -1, 30}] %t A172968 CoefficientList[Series[(1-5x)/(1-7x+x^2), {x, 0, 30}], x] (* _Michael De Vlieger_, Mar 29 2016 *) %t A172968 Fibonacci[4*Range[0, 30] -1] (* _G. C. Greubel_, Jul 15 2019 *) %o A172968 (Magma) [n le 2 select n else 7*Self(n-1)-Self(n-2): n in [1..30]]; // _Bruno Berselli_, Mar 29 2016 %o A172968 (PARI) x='x+O('x^30); Vec((1-5*x)/(1-7*x+x^2)) \\ _Altug Alkan_, Mar 29 2016 %o A172968 (Sage) [fibonacci(4*n-1) for n in (0..30)] # _G. C. Greubel_, Jul 15 2019 %o A172968 (GAP) List([0..30], n-> Fibonacci(4*n-1)); # _G. C. Greubel_, Jul 15 2019 %Y A172968 Cf. A000032, A000045, A081016. %Y A172968 Essentially the same as A033891. %K A172968 nonn,easy %O A172968 0,2 %A A172968 _Artur Jasinski_, Feb 06 2010