This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172971 #8 Dec 05 2022 04:41:49 %S A172971 -1,-1,-1,-1,-1,-1,-1,0,0,-1,-1,1,2,1,-1,-1,7,9,9,7,-1,-1,35,43,44,43, %T A172971 35,-1,-1,191,227,234,234,227,191,-1,-1,1199,1391,1426,1432,1426,1391, %U A172971 1199,-1,-1,10079,11279,11470,11504,11504,11470,11279,10079,-1 %N A172971 Triangle T(n, k) = c(n) - c(k) - c(n-k), where c(n) = Product_{j=0..n} Partitions(j), read by rows. %H A172971 G. C. Greubel, <a href="/A172971/b172971.txt">Rows n = 0..50 of the triangle, flattened</a> %F A172971 T(n, k) = c(n) - c(k) - c(n-k), where c(n) = Product_{j=0..n} Partitions(j). %F A172971 T(n, n-k) = T(n, k). %e A172971 Triangle begins as: %e A172971 -1; %e A172971 -1, -1; %e A172971 -1, -1, -1; %e A172971 -1, 0, 0, -1; %e A172971 -1, 1, 2, 1, -1; %e A172971 -1, 7, 9, 9, 7, -1; %e A172971 -1, 35, 43, 44, 43, 35, -1; %e A172971 -1, 191, 227, 234, 234, 227, 191, -1; %e A172971 -1, 1199, 1391, 1426, 1432, 1426, 1391, 1199, -1; %e A172971 -1, 10079, 11279, 11470, 11504, 11504, 11470, 11279, 10079, -1; %t A172971 c[n_]:= Product[PartitionsQ[j], {j,n}]; %t A172971 T[n_, k_]:= c[n] - (c[k] + c[n-k]); %t A172971 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten %o A172971 (Magma) %o A172971 A000009:= Coefficients(&*[1+x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Sergei Haller's code %o A172971 c:= func< n | (&*[A000009[j+1]: j in [0..n]]) >; %o A172971 A172971:= func< n,k | c(n) - c(k) - c(n-k) >; %o A172971 [A172971(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Dec 04 2022 %o A172971 (SageMath) %o A172971 def EulerTransform(a): %o A172971 @cached_function %o A172971 def b(n): %o A172971 if n == 0: return 1 %o A172971 s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n)) %o A172971 return s//n %o A172971 return b %o A172971 a = BinaryRecurrenceSequence(0, 1) %o A172971 b = EulerTransform(a) # Peter Luschny's code for A000009 %o A172971 @CachedFunction %o A172971 def c(n): return product(b(j) for j in range(n+1)) %o A172971 def A172971(n,k): return c(n) - c(k) - c(n-k) %o A172971 flatten([[A172971(n,k) for k in range(n+1)] for n in range(12)]) # _G. C. Greubel_, Dec 04 2022 %Y A172971 Cf. A000009. %K A172971 sign,tabl,less %O A172971 0,13 %A A172971 _Roger L. Bagula_, Feb 06 2010 %E A172971 Edited by _G. C. Greubel_, Dec 04 2022