This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172980 #17 Jan 25 2017 08:39:29 %S A172980 1,3,4,9,11,12,13,15,16,33,37,42,43,117,154,159,163,168,173,231,338, %T A172980 555,557,558,649,1161,1168,1209,1213,1254,1259,1263,1406,1467,1573, %U A172980 1578,1579,2595,2752,2805,2813,2964,2969,2997,3014,5013,5021,5022,5057,5115 %N A172980 a(1)=1, a(2)=3; for n>=3, a(n) is the smallest number larger than a(n-1) such that, for every k<n, a(n) is relatively prime to a(k) iff n is relatively prime to k. %C A172980 Using the Chinese remainder theorem, it is easy to prove that the sequence is infinite. %H A172980 Alois P. Heinz, <a href="/A172980/b172980.txt">Table of n, a(n) for n = 1..500</a> %p A172980 a:= proc(n) option remember; %p A172980 local ok, m, k; %p A172980 if n<3 then 2*n-1 %p A172980 else for m from a(n-1)+1 do %p A172980 ok:= true; %p A172980 for k from 1 to n-1 do %p A172980 if igcd(n, k)=1 xor igcd(m, a(k))=1 %p A172980 then ok:= false; break fi %p A172980 od; %p A172980 if ok then break fi %p A172980 od; m %p A172980 fi %p A172980 end: %p A172980 seq (a(n), n=1..50); # _Alois P. Heinz_, Nov 21 2010 %t A172980 a[1]=1; a[2]=3; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[AllTrue[ Range[n-1], CoprimeQ[k, a[#]] == CoprimeQ[n, #]&], Return[k]]]; Table[ a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jan 25 2017 *) %Y A172980 Cf. A151976, A159559, A159560, A159615, A159619, A159629, A159698, A160217. %K A172980 nonn %O A172980 1,2 %A A172980 _Vladimir Shevelev_, Nov 21 2010 %E A172980 More terms from _Alois P. Heinz_, Nov 21 2010