This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173046 #5 Feb 16 2021 17:49:00 %S A173046 1,1,1,1,5,1,1,10,10,1,1,19,37,19,1,1,36,105,105,36,1,1,69,270,403, %T A173046 270,69,1,1,134,660,1314,1314,660,134,1,1,263,1563,3895,5189,3895, %U A173046 1563,263,1,1,520,3619,10835,18045,18045,10835,3619,520,1,1,1033,8236,28791,57553,71931,57553,28791,8236,1033,1 %N A173046 Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows. %C A173046 The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - _G. C. Greubel_, Feb 16 2021 %H A173046 G. C. Greubel, <a href="/A173046/b173046.txt">Rows n = 0..100 of the triangle, flattened</a> %F A173046 T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2. %F A173046 Sum_{k=0..n} T(n, k, 2) = 4^(n-1) + 2^n - (n-1) - (5/4)*[n=0] = A000302(n-1) + A132045(n) - (5/4)*[n=0]. - [n=1]. - _G. C. Greubel_, Feb 16 2021 %e A173046 Triangle begins as: %e A173046 1; %e A173046 1, 1; %e A173046 1, 5, 1; %e A173046 1, 10, 10, 1; %e A173046 1, 19, 37, 19, 1; %e A173046 1, 36, 105, 105, 36, 1; %e A173046 1, 69, 270, 403, 270, 69, 1; %e A173046 1, 134, 660, 1314, 1314, 660, 134, 1; %e A173046 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1; %e A173046 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1; %e A173046 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1; %t A173046 T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1]; %t A173046 Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Feb 16 2021 *) %o A173046 (Sage) %o A173046 def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1 %o A173046 flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 16 2021 %o A173046 (Magma) %o A173046 T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >; %o A173046 [T(n,k,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 16 2021 %Y A173046 Cf. A132044 (q=0), A173075 (q=1), this sequence (q=2), A173047 (q=3). %Y A173046 Cf. A000302, A132045. %K A173046 nonn,tabl %O A173046 0,5 %A A173046 _Roger L. Bagula_, Feb 08 2010 %E A173046 Edited by _G. C. Greubel_, Feb 16 2021