This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173049 #7 Apr 27 2021 01:05:41 %S A173049 1,4,4,28,24,28,730,390,390,730,59050,29280,7020,29280,59050,14348908, %T A173049 7145292,914760,914760,7145292,14348908,10460353204,5223003240, %U A173049 650485836,49397040,650485836,5223003240,10460353204,22876792454962,11433166054158,1427188022442,55340738838,55340738838,1427188022442,11433166054158,22876792454962 %N A173049 Triangle T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 3, read by rows. %H A173049 G. C. Greubel, <a href="/A173049/b173049.txt">Rows n = 0..25 of the triangle, flattened</a> %F A173049 T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 3. %e A173049 Triangle begins as: %e A173049 1; %e A173049 4, 4; %e A173049 28, 24, 28; %e A173049 730, 390, 390, 730; %e A173049 59050, 29280, 7020, 29280, 59050; %e A173049 14348908, 7145292, 914760, 914760, 7145292, 14348908; %e A173049 10460353204, 5223003240, 650485836, 49397040, 650485836, 5223003240, 10460353204; %t A173049 p[x_, n_, q_]:= If[n==0, 1, Product[x+q^j, {j,n}] + Product[x*q^j +1, {j,n}]]; %t A173049 T[n_, k_, q_]:= SeriesCoefficient[p[x,n,q], {x,0,k}]; %t A173049 Table[T[n, k, 3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 26 2021 *) %o A173049 (Magma) %o A173049 R<x>:=PowerSeriesRing(Integers(), 50); %o A173049 p:= func< x,n,q | n eq 0 select 1 else (&*[x+q^j: j in [1..n]]) + (&*[1+q^j*x: j in [1..n]]) >; %o A173049 T:= func< n,q | Coefficients(R!( p(x,n,q) )) >; %o A173049 [T(n,3): n in [0..10]]; // _G. C. Greubel_, Apr 26 2021 %Y A173049 Cf. A134058 (q=1), A173048 (q=2), this sequence (q=3). %K A173049 nonn,tabl,easy,less %O A173049 0,2 %A A173049 _Roger L. Bagula_, Feb 08 2010 %E A173049 Edited by _G. C. Greubel_, Apr 26 2021