This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173051 #2 Mar 30 2012 18:40:50 %S A173051 10123457689,20246923478,30370389375,40493875054,50617360823, %T A173051 60740857680,70864405549,80987954228,91111523175,101235101824 %N A173051 Partial sums of A050288. %C A173051 Partial sums of (base 10) Pandigital primes. Note that almost all primes are pandigital. a(59) is (after the first value) the first prime in this sequence. What is the smallest pandigital prime partial sum of (base 10) pandigital primes? In other bases? %F A173051 a(n) = SUM[i=1..n] A050288(i) = SUM[i=1..n] {p is prime and p, base 10, has all 10 digits in its decimal representation, digits may appear multiple times}. %e A173051 The least prime after a(1) is a(59) = 10123457689 + 10123465789 + 10123465897 + 10123485679 + 10123485769 + 10123496857 + 10123547869 + 10123548679 + 10123568947 + 10123578649 + 10123586947 + 10123598467 + 10123654789 + 10123684759 + 10123685749 + 10123694857 + 10123746859 + 10123784569 + 10123846597 + 10123849657 + 10123854679 + 10123876549 + 10123945687 + 10123956487 + 10123965847 + 10123984657 + 10124356789 + 10124358697 + 10124365879 + 10124365987 + 10124369587 + 10124378569 + 10124385967 + 10124389567 + 10124395867 + 10124398657 + 10124536789 + 10124538769 + 10124563789 + 10124563879 + 10124563987 + 10124568793 + 10124576893 + 10124578693 + 10124579863 + 10124583967 + 10124586397 + 10124589637 + 10124593867 + 10124596873 + 10124597683 + 10124635879 + 10124635897 + 10124638759 + 10124659873 + 10124673859 + 10124678953 + 10124683759 + 10124685379 = 597325496783 is prime. %Y A173051 Cf. A000040, A050288, A050290. %K A173051 base,easy,nonn %O A173051 1,1 %A A173051 _Jonathan Vos Post_, Feb 08 2010