This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173103 #25 Nov 10 2020 15:44:31 %S A173103 1,1,2,26,924,81624,13433520,3706068240,1582042381920,987057348842880, %T A173103 861632512758823680,1016677874552767660800,1576819957670934809817600, %U A173103 3140963381712726319842892800,7880571655922780897709237811200,24492587962448960350527019884595200 %N A173103 The number of possible borders of Latin squares with the top row fixed. %C A173103 The definition is not quite right, and should be corrected. %H A173103 Alois P. Heinz, <a href="/A173103/b173103.txt">Table of n, a(n) for n = 1..100</a> %H A173103 J. de Ruiter, <a href="http://liacs.leidenuniv.nl/assets/Bachelorscripties/10-04-JohandeRuiter.pdf">On Jigsaw Sudoku Puzzles and Related Topics</a>, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010. %F A173103 For n>3, a(n)=(n-2)!((n-1)/(n-2)d[n-1]^2+2d[n-1]d[n-2]+(2n-5)/(n-3)d[n-2]^2), where d[k] is the number of derangements of k elements (A000166). %e A173103 The only two configurations for n=3, given the top row is 123: %e A173103 123 123 %e A173103 2 1 3 2 %e A173103 312 231 %e A173103 Two arbitrary configurations for n=4, given the top row is 1234: %e A173103 1234 1234 %e A173103 2 1 4 3 %e A173103 3 2 3 2 %e A173103 4123 2341 %p A173103 d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end: %p A173103 a:= proc(n) a(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/ %p A173103 (n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2)) %p A173103 end: %p A173103 seq(a(n), n=1..20); # _Alois P. Heinz_, Aug 18 2013 %t A173103 d = Subfactorial; %t A173103 a[n_] := If[n <= 3, {1, 1, 2}[[n]], (n-2)! (((2n-5) d[n-2]^2)/(n-3) + 2d[n-1] d[n-2] + ((n-1) d[n-1]^2)/(n-2))]; %t A173103 Array[a, 20] (* _Jean-François Alcover_, Nov 10 2020 *) %Y A173103 Related to A000166. Equals A173104 divided by n!. %K A173103 nonn %O A173103 1,3 %A A173103 _Johan de Ruiter_, Feb 09 2010