This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173104 #22 Nov 10 2020 17:08:43 %S A173104 1,2,12,624,110880,58769280,67704940800,149428671436800, %T A173104 574091539551129600,3581833707481042944000,34393612685291413069824000, %U A173104 486990328595374993951457280000,9818890674272030616178239406080000,273823820339488809857168046768783360000 %N A173104 The number of possible borders of Latin squares. %C A173104 The definition is not quite right, and should be corrected. %H A173104 Alois P. Heinz, <a href="/A173104/b173104.txt">Table of n, a(n) for n = 1..100</a> %H A173104 J. de Ruiter, <a href="http://liacs.leidenuniv.nl/assets/Bachelorscripties/10-04-JohandeRuiter.pdf">On Jigsaw Sudoku Puzzles and Related Topics</a>, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010. %F A173104 For n>3, a(n)=n!(n-2)!((n-1)/(n-2)d[n-1]^2+2d[n-1]d[n-2]+(2n-5)/(n-3)d[n-2]^2), where d[k] is the number of derangements of k elements (A000166). %e A173104 Two arbitrary configurations for n=3: %e A173104 123 312 %e A173104 2 1 1 3 %e A173104 312 231 %e A173104 Two arbitrary configurations for n=4: %e A173104 1234 1432 %e A173104 2 1 3 4 %e A173104 3 2 4 1 %e A173104 4123 2143 %p A173104 d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end: %p A173104 b:= proc(n) b(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/ %p A173104 (n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2)) %p A173104 end: %p A173104 a:= n-> n!*b(n): %p A173104 seq(a(n), n=1..20); # _Alois P. Heinz_, Aug 18 2013 %t A173104 d = Subfactorial; %t A173104 a[n_] := If[n <= 3, {1, 2, 12}[[n]], n! (n-2)! ((n-1)/(n-2) d[n-1]^2 + 2d[n-1] d[n-2] + (2n-5)/(n-3) d[n-2]^2)]; %t A173104 Array[a, 20] (* _Jean-François Alcover_, Nov 10 2020 *) %Y A173104 Related to A000166. Equals A173103 multiplied by n!. %K A173104 nonn %O A173104 1,2 %A A173104 _Johan de Ruiter_, Feb 09 2010