This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173120 #12 Apr 28 2021 02:01:30 %S A173120 1,1,1,1,-2,1,1,-1,-1,1,1,0,-2,0,1,1,1,14,14,1,1,1,2,15,28,15,2,1,1,3, %T A173120 17,-21,-21,17,3,1,1,4,20,-4,-42,-4,20,4,1,1,5,24,16,210,210,16,24,5, %U A173120 1,1,6,29,40,226,420,226,40,29,6,1 %N A173120 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4, read by rows. %H A173120 G. C. Greubel, <a href="/A173120/b173120.txt">Rows n = 0..50 of the triangle, flattened</a> %F A173120 T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4. %F A173120 Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = -4. - _G. C. Greubel_, Apr 27 2021 %e A173120 Triangle begins as: %e A173120 1; %e A173120 1, 1; %e A173120 1, -2, 1; %e A173120 1, -1, -1, 1; %e A173120 1, 0, -2, 0, 1; %e A173120 1, 1, 14, 14, 1, 1; %e A173120 1, 2, 15, 28, 15, 2, 1; %e A173120 1, 3, 17, -21, -21, 17, 3, 1; %e A173120 1, 4, 20, -4, -42, -4, 20, 4, 1; %e A173120 1, 5, 24, 16, 210, 210, 16, 24, 5, 1; %e A173120 1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1; %t A173120 T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]]; %t A173120 Table[T[n,k,-4], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 27 2021 *) %o A173120 (Sage) %o A173120 @CachedFunction %o A173120 def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) ) %o A173120 flatten([[T(n,k,-4) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 27 2021 %Y A173120 Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), this sequence (q= -4), A173122. %K A173120 sign,tabl,easy,less %O A173120 0,5 %A A173120 _Roger L. Bagula_, Feb 10 2010 %E A173120 Edited by _G. C. Greubel_, Apr 27 2021