This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173177 #18 May 07 2025 12:36:29 %S A173177 2,5,8,14,17,20,29,32,35,38,47,50,53,62,68,74,77,80,89,95,98,104,110, %T A173177 113,119,134,137,140,152,155,164,167,173,182,185,188,197,203,209,215, %U A173177 218,227,230,242,248,260,269,272,284,287,299 %N A173177 Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4. %C A173177 With Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic, %C A173177 for k > 1, k = 2*a + 3*b (a and b integers) %C A173177 first type %C A173177 A001477 = (2*A080425) + (3*A008611) %C A173177 A000040 = (2*A039701) + (3*A157966) %C A173177 A024893 Numbers k such that 3*k + 2 is prime %C A173177 A034936 Numbers k such that 3*k + 4 is prime %C A173177 OR %C A173177 second type %C A173177 A001477 = (2*A028242) + (3*A059841) %C A173177 A000040 = (2*A067076) + (3*1) %C A173177 A067076 Numbers k such that 2*k + 3 is prime %C A173177 k a b OR a b %C A173177 -- - - - - %C A173177 0 0 0 0 0 %C A173177 1 - - - - %C A173177 2 1 0 1 0 %C A173177 3 0 1 0 1 %C A173177 4 2 0 2 0 %C A173177 5 1 1 1 1 %C A173177 6 0 2 3 0 %C A173177 7 2 1 2 1 %C A173177 8 1 2 4 0 %C A173177 9 0 3 3 1 %C A173177 10 2 2 5 0 %C A173177 11 1 3 4 1 %C A173177 12 0 4 6 0 %C A173177 13 2 3 5 1 %C A173177 14 1 4 7 0 %C A173177 15 0 5 6 1 %C A173177 ... %C A173177 2* 2 + 3 OR 3* 1 + 4 = 7; %C A173177 2* 5 + 3 OR 3* 3 + 4 = 13; %C A173177 2* 8 + 3 OR 3* 5 + 4 = 19; %C A173177 2*14 + 3 OR 3* 9 + 4 = 31; %C A173177 2*17 + 3 OR 3*11 + 4 = 37; %C A173177 2*20 + 3 OR 3*13 + 4 = 43; %C A173177 2*29 + 3 OR 3*19 + 4 = 61; %C A173177 2*32 + 3 OR 3*21 + 4 = 67; %C A173177 2*35 + 3 OR 3*23 + 4 = 73. %C A173177 A034936 Numbers k such that 3k+4 is prime. %C A173177 A002476 Primes of the form 6k+1. %C A173177 A024899 Nonnegative integers k such that 6k+1 is prime. %C A173177 2, 5, 8, 14, 17, 20, ... = (3*(4*A024899 - A034936) - 5)/2. %H A173177 Chris K. Caldwell, <a href="https://t5k.org/notes/faq/six.html">FAQ: Are all primes (past 2 and 3) of the forms 6n+1 and 6n-1?</a> %t A173177 Select[Range[300],PrimeQ[2#+3]&&Divisible[2#-1,3]&] (* _Harvey P. Dale_, Aug 25 2016 *) %Y A173177 Cf. A067076, A034936, A002476, A024899. %K A173177 nonn,uned %O A173177 1,1 %A A173177 _Eric Desbiaux_, Feb 11 2010 %E A173177 More terms from _Harvey P. Dale_, Aug 25 2016