This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173178 #22 Jul 30 2024 14:35:54 %S A173178 1,4,7,10,13,19,22,25,28,34,40,43,49,52,55,64,67,73,82,85,88,94,97, %T A173178 112,115,118,124,127,130,133,139,145,154,157,172,175,178,190,193,199, %U A173178 208,214,220,223,229,232,238,244,250,253,259,277,280,283,292,295,298,307,319 %N A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2. %C A173178 With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic, %C A173178 for k > 1, k = 2*a + 3*b (a and b integers) %C A173178 first type %C A173178 A001477 = (2*A080425) + (3*A008611) %C A173178 A000040 = (2*A039701) + (3*A157966) %C A173178 A024893 Numbers k such that 3*k + 2 is prime %C A173178 A034936 Numbers k such that 3*k + 4 is prime %C A173178 OR second type %C A173178 A001477 = (2*A028242) + (3*A059841) %C A173178 A000040 = (2*A067076) + (3*1) %C A173178 A067076 Numbers k such that 2*k + 3 is prime %C A173178 k a b OR a b %C A173178 -- - - - - %C A173178 0 0 0 0 0 %C A173178 1 - - - - %C A173178 2 1 0 1 0 %C A173178 3 0 1 0 1 %C A173178 4 2 0 2 0 %C A173178 5 1 1 1 1 %C A173178 6 0 2 3 0 %C A173178 7 2 1 2 1 %C A173178 8 1 2 4 0 %C A173178 9 0 3 3 1 %C A173178 10 2 2 5 0 %C A173178 11 1 3 4 1 %C A173178 12 0 4 6 0 %C A173178 13 2 3 5 1 %C A173178 14 1 4 7 0 %C A173178 15 0 5 6 1 %C A173178 ... %C A173178 2* 1 + 3 OR 3* 1 + 2 = 5; %C A173178 2* 4 + 3 OR 3* 3 + 2 = 11; %C A173178 2* 7 + 3 OR 3* 5 + 2 = 17; %C A173178 2*10 + 3 OR 3* 7 + 2 = 23; %C A173178 2*13 + 3 OR 3* 9 + 2 = 29; %C A173178 2*19 + 3 OR 3*13 + 2 = 41; %C A173178 2*22 + 3 OR 3*15 + 2 = 47; %C A173178 2*25 + 3 OR 3*17 + 2 = 53; %C A173178 2*28 + 3 OR 3*19 + 2 = 59. %C A173178 A024893 Numbers k such that 3k+2 is prime. %C A173178 A007528 Primes of the form 6k-1. %C A173178 A024898 Positive integers k such that 6k-1 is prime. %C A173178 1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2. %H A173178 Amiram Eldar, <a href="/A173178/b173178.txt">Table of n, a(n) for n = 1..10000</a> %H A173178 Chris K. Caldwell, <a href="https://t5k.org/notes/faq/six.html">FAQ: Are all primes (past 2 and 3) of the forms 6n+1 and 6n-1?</a>, Frequently asked questions about primes. %F A173178 a(n) = 3*A059325(n) + 1. - _Amiram Eldar_, Jul 30 2024 %t A173178 Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* _Amiram Eldar_, Jul 30 2024 *) %Y A173178 Cf. A067076, A024893, A007528, A024898, A059325. %K A173178 nonn,easy,uned %O A173178 1,2 %A A173178 _Eric Desbiaux_, Feb 11 2010 %E A173178 Data corrected and extended by _Amiram Eldar_, Jul 30 2024