cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173238 Triangle by columns, A000041 in every column shifted down twice for columns > 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 2, 1, 7, 3, 1, 11, 5, 2, 1, 15, 7, 3, 1, 22, 11, 5, 2, 1, 30, 15, 7, 3, 1, 42, 22, 11, 5, 2, 1, 56, 30, 15, 7, 3, 1, 77, 42, 22, 11, 5, 2, 1, 101, 56, 30, 15, 7, 3, 1, 135, 77, 42, 22, 11, 5, 2, 1, 176, 101, 56, 30, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 13 2010

Keywords

Comments

Row sums = A024786 starting with A024786(2): (1, 1, 3, 4, 8, 11, 19, 26, ...) = number of 2's in all partitions of n.
A173238 as an infinite lower triangular matrix * [1, 2, 3, ...] = A103650.
Let the triangle = M. Then Lim_{n->inf} M^n = (1, 1, 3, 4, 10, 13, 26, ...), the left-shifted vector considered as a sequence = A092119, the Euler transform of the ruler sequence, A001511.
Given P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), then P(x) = A(x)/A(x^2), where A(x) = polcoeff A092119: (1 + x + 3x^2 + 4x^3 + ...).
Conjectures: Given the infinite set of triangles with A000041 in every column shifted down 0, 1, 2, ... n times, row sums of n-th triangle (where A173238 = 2nd in the set) = the numbers of n's in all partitions of n. E.g., row sums = of A173238 = A024786, the numbers of 2's in all partitions of n.
Similarly, row sums of triangle A173239 with columns >0 shifted down thrice = numbers of 3's in all partitions of n, and so on. Refer to comments in A000041 regarding the numbers of 1's in partitions of n.
...
Second conjecture: Given the infinite set of analogous triangles with columns shifted down 2, 3, 4, ..., k times, we let such triangles = T(k) and perform lim_{n->inf} T^n(k), obtaining the left-shifted vectors considered as sequences. The conjecture states that the infinite set of such left-shifted vectors = the Euler transform of the infinite set of Ruler functions starting with the ruler function for k=2 = A001511: (1, 2, 1, 3, 1, 2, 1, ...)
To obtain the k-th ruler functions, begin with the natural numbers, 1,...2,...3,...4,...5,...6,...7,...8,...9,...; then for k = 2 we get A001511: 1,...2,...1,...3,...1,...2,...1,...4,...1,...; by finding the highest exponent of k dividing n, then adding 1. Similarly, for k = 2, we obtain A051064: 1,...1,...2,...1,...1,...2,...1,...1,...3,...
Next, we obtain the Euler transforms of the ruler functions (e.g., Euler transform of A001511 = A092119: (1, 1, 3, 4, 10, 13, 26, ...), noting that A092119 is lim_{n->inf} A173238^n, the left-shifted vector.
...
Third conjecture: Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(k)(x) = the Euler transform of k-th ruler sequence, (k=2,3,...). Then P(x) = A(k)(x) / A(k)(x^k).
Examples: for k=2, A(x) = A092119: (1, 1, 3, 4, 10, 13, ...), then P(x) = (1 + x + 2x^2 + 3x^3 + ...) = (1 + x + 3x^2 + 4x^3 + ...) / (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...). For k=3 relating to triangle A173238, the left-shifted vector = the Euler transform of A051064 = A(x) for k=3, then P(x) = A(x) / A(x^3).
The conjecture extends the analogous conclusions to all k.
From Gary W. Adamson, Feb 25 2010: (Start)
Proof of second conjecture received from Helmut Prodinger 02/28/10 with a summary by R. J. Mathar:
Consider Product_{n>=0} z^(t^n)/(1-z^(t^n)) = Sum_{k>=1} (1+v_t(k))z^k where v_t(n) is the number of trailing zeros in the t-ary expansion of n, and its Euler transform A(z) = product_{k >= 1} 1/(1-z^k)^{1+v_t(k)}, then A(z)/A(z^t) = product_{k >= 1} 1/(1-z^k) is the partition generating function.
Here is the proof: A(z)/A(z^t) = Product_{k>=1} (1-z^(tk))^(1+v_t(k))/(1-z^k)^(1+v_t(k))
= Product_{k>=1} (1-z^(tk))^(v_t(tk))/(1-z^k)^(1+v_t(k))
= Product_{k>=1} (1-z^k)^(v_t(k))/(1-z^k)^(1+v_t(k)) (*)
= Product_{k>=1} 1/(1-z^k)
as desired. Notice that for (*), that v_t(n)=0 if n is not divisible by t. [Helmut Prodinger, hproding(AT)sun.ac.za, Feb 28 2010] (End)

Examples

			First few rows of the triangle:
    1;
    1;
    2,   1;
    3,   1;
    5,   2,  1;
    7,   3,  1;
   11,   5,  2,  1;
   15,   7,  3,  1;
   22,  11,  5,  2,  1;
   30,  15,  7,  3,  1;
   42,  22, 11,  5,  2, 1;
   56,  30, 15,  7,  3, 1;
   77,  42, 22, 11,  5, 2, 1;
  101,  56, 30, 15,  7, 3, 1;
  135,  77, 42, 22, 11, 5, 2, 1;
  176, 101, 56, 30, 15, 7, 3, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n - 2 k], {n, 17}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 23 2021 *)

Formula

T(n,k) = A000041(n-2*k) for k=0..floor(n/2).

Extensions

a(24), a(25) corrected by Georg Fischer, Nov 23 2021