This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173239 #14 Jun 04 2022 22:03:59 %S A173239 1,1,2,3,1,5,1,7,2,11,3,1,15,5,1,22,7,2,30,11,3,1,42,15,5,1,56,22,7,2, %T A173239 77,30,11,3,1,101,42,15,5,1,135,56,22,7,2,176,77,30,11,3,1,231,101,42, %U A173239 15,5,1,297,135,56,22,7,2,385,176,77,30,11,3,1 %N A173239 Triangle by columns, A000041 shifted down thrice, k>=0. %C A173239 Row sums = A024787, the numbers of 3's in all partitions of n, where A024787 starts with offset 1: (0, 0, 1, 1, 2, 4, 6, 9, 15,...). Triangle A173239 row sums start with the first "1" of A024787. %C A173239 Let the triangle = M as an infinite lower triangular matrix. Then Lim_{n->inf} = A173241, the Euler transform of A051064 (the ruler function for 3). %C A173239 Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), then P(x) = A(x) / A(x^3), where A(x) = polcoeff A173241: (1 + x + 2x^2 + 4x^3 + 6x^4 + ...) %C A173239 Refer to A173238 comments for three conjectures relating A000041 to the infinite set of generalized ruler function sequences. %F A173239 T(n,k) = A000041(n-3*k) for k=0..floor(n/3). %e A173239 First few rows of the triangle = %e A173239 1; %e A173239 1; %e A173239 2; %e A173239 3, 1; %e A173239 5, 1; %e A173239 7, 2; %e A173239 11, 3, 1; %e A173239 15, 5, 1; %e A173239 22, 7, 2; %e A173239 30, 11, 3, 1; %e A173239 42, 15, 5, 1; %e A173239 56, 22, 7, 2; %e A173239 77, 30, 11, 3, 1; %e A173239 101, 42, 15, 5, 1; %e A173239 135, 56, 22, 7, 2; %e A173239 176, 77, 30, 11, 3, 1; %e A173239 231, 101, 42, 15, 5, 1; %e A173239 297, 135, 56, 22, 7, 2; %e A173239 385, 176, 77, 30, 11, 3, 1; %e A173239 490, 231, 101, 42, 15, 5, 1; %e A173239 627, 297, 135, 56, 22, 7, 2; %e A173239 792, 385, 176, 77, 30, 11, 3, 1; %e A173239 1002,490, 231, 101, 42, 15, 5, 1; %e A173239 1255, 627, 297, 135, 56, 22, 7, 2; %e A173239 1575, 792, 385, 176, 77, 30, 11, 3, 1; %e A173239 ... %Y A173239 Cf. A000041, A173238, A173241, A051064, A024787. %K A173239 nonn,tabf,easy %O A173239 0,3 %A A173239 _Gary W. Adamson_, Feb 13 2010