This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173265 #10 Jan 23 2019 08:29:49 %S A173265 1,1,1,1,2,1,1,2,3,1,1,2,6,4,1,1,2,9,10,5,1,1,2,12,20,15,6,1,1,2,15, %T A173265 34,35,21,7,1,1,2,18,52,70,56,28,8,1,1,2,21,74,125,126,84,36,9,1,1,2, %U A173265 24,100,205,252,210,120,45,10,1,1,2,27,130,315,461,462,330,165,55,11,1 %N A173265 T(0,k) = 1 and T(n,k) = [x^k] (1 - x^(n + 1))/(1 - x)^(n + 1) for n >= 1, square array read by descending antidiagonals(n >= 0, k >= 0). %e A173265 Square array begins: %e A173265 n\k | 0 1 2 3 4 5 6 7 8 ... %e A173265 ---------------------------------------------- %e A173265 0 | 1 1 1 1 1 1 1 1 1 ... %e A173265 1 | 1 2 2 2 2 2 2 2 2 ... %e A173265 2 | 1 3 6 9 12 15 18 21 24 ... %e A173265 3 | 1 4 10 20 34 52 74 100 130 ... %e A173265 4 | 1 5 15 35 70 125 205 315 460 ... %e A173265 5 | 1 6 21 56 126 252 461 786 1266 ... %e A173265 6 | 1 7 28 84 210 462 924 1715 2996 ... %e A173265 7 | 1 8 36 120 330 792 1716 3432 6434 ... %e A173265 8 | 1 9 45 165 495 1287 3003 6435 12870 ... %e A173265 ... %t A173265 p[x_, n_] = If[n == 0, 1/(1 - x), (Sum[x^i, {i, 0, n}])/(1 - x)^n]; %t A173265 a = Table[Table[SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 0, 20}]; %t A173265 Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]] %o A173265 (Maxima) (kk : 50, nn : 15)$ %o A173265 gf(n) := taylor(if n = 0 then 1/(1 - x) else (1 - x^(n + 1))/(1 - x)^(n + 1), x, 0, kk)$ %o A173265 T(n, k) := ratcoef(gf(n), x, k)$ %o A173265 create_list(T(k, n - k), n, 0, nn, k, 0, n); %o A173265 /* _Franck Maminirina Ramaharo_, Jan 18 2019 */ %Y A173265 Cf. A173264, A173266. %K A173265 nonn,easy,tabl %O A173265 0,5 %A A173265 _Roger L. Bagula_, Feb 14 2010 %E A173265 Edited by _Franck Maminirina Ramaharo_, Jan 23 2019