cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173269 2*prime(prime(n))-3 and 3*prime(prime(n))-2 are both primes.

This page as a plain text file.
%I A173269 #3 Mar 30 2012 18:52:39
%S A173269 1,2,3,8,11,14,15,19,23,24,28,39,44,47,54,62,63,81,85,101,121,122,124,
%T A173269 136,152,159,180,218,219,241,247,253,274,290,298,307,323,324,341,361,
%U A173269 371,376,381,403,410,413,441,443,479,487,499,552,554,556,562,582,622
%N A173269 2*prime(prime(n))-3 and 3*prime(prime(n))-2 are both primes.
%e A173269 a(1)=1 because 2*p(p(1))-3=2*p(2)-3=2*3-3=3=prime and 3*p(p(1))-2=7=prime; a(2)=2 because 2*p(p(2))-3=2*p(3)-3=2*5-3=7=prime and 3*p(p(2))-2=13=prime; a(3)=3 because 2*p(p(3))-3=2*p(5)-3=2*11-3=19=prime and 3*p(p(3))-2=31=prime; a(4)=8 because 2*p(p(8))-3=2*p(19)-3=2*67-3=131=prime and 3*p(p(8))-2=199=prime.
%Y A173269 Cf. A063908, A088878.
%K A173269 nonn
%O A173269 1,2
%A A173269 _Juri-Stepan Gerasimov_, Feb 14 2010
%E A173269 Inserted 23 and 24, removed 34, extended the sequence - _R. J. Mathar_, Mar 01 2010