A173283 A(x) satisfies A005408(x) = A(x)/A(x^2), A005408 = odd numbers.
1, 3, 8, 16, 32, 56, 96, 152, 240, 360, 536, 768, 1096, 1520, 2096, 2824, 3792, 5000, 6568, 8496, 10960, 13960, 17728, 22264, 27896, 34624, 42872, 52640, 64504, 78464, 95248, 114856, 138256, 165448, 197640, 234832, 278592, 328920, 387744, 455064
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A173283 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*(2*n-4*l+1),l=0..n/2) ; end if; end proc: seq(A173283(n),n=0..60) ; # R. J. Mathar, Apr 01 2010
-
Mathematica
m = 40; A[_] = 1; Do[A[x_] = A[x^2] (1 + x)/(1 - x)^2 + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Feb 06 2020 *)
Formula
Given M = triangle A152204, odd numbers shifted down twice in every column > 0.
A173283 = lim_{n->inf} M^n, the left-shifted vector considered as a sequence.
a(n) = Sum_{t=0..n/2} (2*n - 4*t + 1)*a(t). - R. J. Mathar, Apr 01 2010
Extensions
More terms from R. J. Mathar, Apr 01 2010
Comments