A173284 Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1; 2, 1; 3, 1; 5, 2, 1; 8, 3, 1; 13, 5, 2, 1; 21, 8, 3, 1; 34, 13, 5, 2, 1; 55, 21, 8, 3, 1; 89, 34, 13, 5, 2, 1; 144, 55, 21, 8, 3, 1; 233, 89, 34, 13, 5, 2, 1; 377, 144, 55, 21, 8, 3, 1; 610, 233, 89, 34, 13, 5, 2, 1; ...
Crossrefs
Programs
-
Maple
T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013
Formula
Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
From Johannes W. Meijer, Sep 05 2013: (Start)
T(n,k) = A000045(n-2*k+1), n >= 0 and 0 <= k <= floor(n/2).
T(n,k) = A104762(n-k, k). (End)
Extensions
Term a(15) corrected by Johannes W. Meijer, Sep 05 2013
Comments