cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173304 Triangle generated from the array in A173302 (partition numbers starting new rows at n = 1, 3, 7, 15, ...).

This page as a plain text file.
%I A173304 #10 Feb 19 2022 08:56:47
%S A173304 1,1,1,1,1,1,1,2,2,1,2,3,2,4,4,3,4,6,4,7,8,6,1,8,11,9,2,12,15,12,3,14,
%T A173304 20,17,5,21,26,23,7,24,35,31,11,34,45,41,15,41,58,55,21,1,55,75,71,29,
%U A173304 1,66,96,93,40,2,88,121,120,53,3,105,154,154,72,5,137,193,196,94,7
%N A173304 Triangle generated from the array in A173302 (partition numbers starting new rows at n = 1, 3, 7, 15, ...).
%C A173304 Row sums = A000041, the partition numbers.
%F A173304 The generating array is in A173302.
%F A173304   1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, ...
%F A173304      1, 1, 2, 3, 5,  7, 11, 15, 22, 30, 42, 56,  77, 101, 135, ...
%F A173304            1, 1, 2,  3,  5,  7, 11, 15, 22, 30,  42,  56,  77, ...
%F A173304                          1,  1,  2,  3,  5,  7,  11,  15,  22, ...
%F A173304                                                             1, ...
%F A173304   ...
%F A173304 Take finite differences from the bottom, creating a new array in which rows are A002865 (a slight variant), A027336, A027338, A027342, ...; i.e., the numbers of partitions of n that do not contain (1, 2, 4, 8, ...) as a part.
%e A173304 The finite difference array starts:
%e A173304   1, 1, 1, 1, 2, 2, 4, 4, 7,  8, 12, 14, 21, 24, ...; = A002865 (a variant)
%e A173304         1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, ...; = A027336
%e A173304            1, 1, 2, 3, 4, 6,  9, 12, 17, 23, 31, ...; = A017338
%e A173304                        1, 1,  2,  3,  5,  7, 11, ...; = A027342
%e A173304   ...
%e A173304 Last, columns of the array become rows of triangle A173304:
%e A173304     1;
%e A173304     1;
%e A173304     1,   1;
%e A173304     2,   2,   1;
%e A173304     2,   3,   2;
%e A173304     4,   4,   3;
%e A173304     4,   6,   4,  1;
%e A173304     7,   8,   6,  1;
%e A173304     8,  11,   9,  2;
%e A173304    12,  15,  12,  3;
%e A173304    14,  20,  17,  5;
%e A173304    21,  26,  23,  7;
%e A173304    24,  35,  31, 11;
%e A173304    34,  45,  41, 15;
%e A173304    41,  58,  55, 21, 1;
%e A173304    55,  75,  71, 29, 1;
%e A173304    66,  96,  93, 40, 2;
%e A173304    88, 121, 120, 53, 3;
%e A173304   105, 154, 154, 72, 5;
%e A173304   137, 193, 196, 94, 7;
%e A173304   ...
%Y A173304 Cf. A000041, A173301, A173302, A173303.
%K A173304 nonn,tabf,uned
%O A173304 0,8
%A A173304 _Gary W. Adamson_, Feb 15 2010