This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173331 #2 Mar 30 2012 18:51:05 %S A173331 2,2,13,2,31,4,2,55,8,81,4,91,99,105,133,10,6,2,10,181,183,227,8,237, %T A173331 16,10,14,265,2,301,303,16,18,8,355,379,6,381,389,14,421,429,453,451, %U A173331 487,20,531,543,20,24,585,24,18,16,637,631,655,12,651,675,22,731,26,741,757 %N A173331 Second of two intermediate sequences for integral solution of A002144(n)=x^2+y^2. %C A173331 a(n) = A173330(n)*A010050(A005098(n)) mod A002144(n); %C A173331 A002973(n) = MIN(a(n), A002144(n) - a(n)) / 2. %D A173331 H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122. %F A173331 a(n) = ((2k)! / 2(k!))^2 mod p, where p = 4*k+1 = A002144(n). %e A173331 n=7: A002144(7) = 53 = 4*13 + 1, %e A173331 a(7) = A173330(7) * 26! mod 53 = 7*403291461126605635584000000 mod 53 = 2, %e A173331 A002973(7) = MIN(2, 53 - 2) / 2 = 1; %e A173331 n=8: A002144(8) = 61 = 4*15 + 1, %e A173331 a(8) = A173330(8) * 30! mod 61 = 5*265252859812191058636308480000000 mod 61 = 55, %e A173331 A002973(8) = MIN(55, 61 - 55) / 2 = 3. %Y A173331 Cf. A123072, A000142. %K A173331 nonn %O A173331 1,1 %A A173331 _Reinhard Zumkeller_, Feb 16 2010