This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173337 #27 Feb 08 2025 01:23:30 %S A173337 40,50,54,171,195,231,330,377,387,518,638,742,745,888,1057,1141,1397, %T A173337 1561,1788,2422,2682,2763,3206,3357,3805,4037,4344,4382,4915,5093, %U A173337 5138,5391,5558,5951,6147,8063,8952,9132,9422,10109,10968,11796,12287,12481 %N A173337 Numbers k>1 such that phi(phi(k)) = sigma(sopf(k)). %H A173337 Amiram Eldar, <a href="/A173337/b173337.txt">Table of n, a(n) for n = 1..1000</a> %F A173337 k such that A010554(k) = A000203(A008472(k)). %e A173337 40 is in the sequence because phi(40)= 16, phi(16) = 8, sopf(40) = 7 and sigma(7) = 8; %e A173337 171 is in the sequence because phi(171) = 108, phi(108) = 36, sopf(171) = 22 and sigma(22) = 36. %p A173337 with(numtheory) : %p A173337 A008472 := proc(n) %p A173337 add(p, p = factorset(n): %p A173337 end proc: %p A173337 isA173337 := proc(n) %p A173337 phi(phi(n)) = sigma(A008472(n)) ; %p A173337 end proc: %p A173337 for n from 1 do %p A173337 if isA173337(n) then printf("%d,",n) ; fi; %p A173337 end do: # _R. J. Mathar_, Jul 06 2012 %t A173337 sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 13000], EulerPhi[EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* _Amiram Eldar_, Jul 09 2019 *) %t A173337 Select[Range[2,15000],DivisorSigma[1,Total[FactorInteger[#][[All,1]]]] == EulerPhi[ EulerPhi[#]]&] (* _Harvey P. Dale_, Apr 05 2020 *) %o A173337 (PARI) isok(n) = (n>1) && eulerphi(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ _Michel Marcus_, Jul 10 2019 %Y A173337 Cf. A000010 (Euler totient function), A000203 (sum of divisors), A008472 (sum of prime factors), A010554. %K A173337 nonn %O A173337 1,1 %A A173337 _Michel Lagneau_, Feb 16 2010 %E A173337 Definition clarified by _N. J. A. Sloane_, Apr 05 2020