A173431 Count of consecutive coprime iterations of sum-of-divisors function.
1, 6, 5, 4, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 2, 1, 4, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 5, 2, 1, 2, 1, 1
Offset: 1
Examples
Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 7 ) ) ... ) the iterates are 7, 8, 15, 24, ... . The initial, consecutive, pairwise, coprime iterates are 7, 8, 15, and there are 3 of these, so a(7) = 3. Here sigma ( 7 ) = 8, sigma ( sigma ( 7 ) ) = sigma ( 8 ) = 15, etc.
References
- Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
- Oystein Ore, Number Theory and Its History, 1988, Dover Publications, ISBN 0486656209, pp. 88-96.
Links
- Leonard Eugene Dickson, History of the Theory of Numbers, Volume I, Divisibility and Primality, Carnegie Institution of Washington, 1919, Chapters II and X
Crossrefs
Programs
-
PARI
a(n)=my(t,s);if(n==1,1,while(1,s++;t=sigma(n);if(gcd(t,n)==1,n=t,return(s)))) \\ Charles R Greathouse IV, Feb 06 2012
Comments