This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173432 #30 Apr 27 2024 17:21:52 %S A173432 1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1, %T A173432 1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1, %U A173432 2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0 %N A173432 NW-SE diagonal sums of Riordan array A112468. %C A173432 Matches Fibonacci-sequence, such that F(n) + a(n) and F(n) - a(n) = always even. %C A173432 Periodic sequence with period: [1,1,2,1,1,0]. - _Philippe Deléham_, Oct 11 2011 %H A173432 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1). %F A173432 a(n) = 1 + A131531(n) with inverse binomial transform: 1, 0, 1, -3, 6, -11, 21, .., a signed variant of A024495. - _R. J. Mathar_, Mar 04 2010 %F A173432 a(2n+1) = a(2n)-a(2n-1)+2, a(2n) = a(2n-1)-a(2n-2) with a(1) = a(2)=1. - _Philippe Deléham_, Oct 11 2011 %F A173432 a(n) = a(n-1)-a(n-3)+a(n-4). - _Colin Barker_, Sep 26 2014 %F A173432 G.f.: -x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)). - _Colin Barker_, Sep 26 2014 %F A173432 a(n) = 2*ceiling(n/6)-2*floor(n/6)+floor(n/3)-ceiling(n/3). - _Wesley Ivan Hurt_, Sep 27 2014 %F A173432 a(n) = A001045(n) - A111927(n). - _Paul Curtz_, Dec 16 2020 %p A173432 A173432:=n->2*ceil(n/6)-2*floor(n/6)+floor(n/3)-ceil(n/3): seq(A173432(n), n=1..100); # _Wesley Ivan Hurt_, Sep 27 2014 %t A173432 Table[2 Ceiling[n/6] - 2 Floor[n/6] + Floor[n/3] - Ceiling[n/3], {n, 50}] (* _Wesley Ivan Hurt_, Sep 27 2014 *) %o A173432 (PARI) Vec(-x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)) + O(x^100)) \\ _Colin Barker_, Sep 26 2014 %o A173432 (Magma) [2*Ceiling(n/6)-2*Floor(n/6)+Floor(n/3)-Ceiling(n/3) : n in [1..100]]; // _Wesley Ivan Hurt_, Sep 27 2014 %Y A173432 Cf. A000045, A024495, A112468, A131531. %K A173432 nonn,easy %O A173432 1,3 %A A173432 _Mark Dols_, Feb 18 2010 %E A173432 Corrected and extended by _Philippe Deléham_, Oct 11 2011