cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173472 Numbers k such that exactly one of prime(k)^2 - 2 and prime(k)^2 + 2 is prime.

This page as a plain text file.
%I A173472 #8 Jan 23 2019 02:32:21
%S A173472 1,3,4,6,8,10,12,14,15,18,20,24,27,28,31,32,34,40,43,47,48,51,52,55,
%T A173472 62,65,68,72,82,86,87,91,94,99,100,104,107,111,119,123,128,129,130,
%U A173472 132,133,134,135,139,141,150,152,170,172,177,180,182,191,200,202,209,211,214
%N A173472 Numbers k such that exactly one of prime(k)^2 - 2 and prime(k)^2 + 2 is prime.
%C A173472 Essentially the same as A137291.
%e A173472 a(1)=1 because prime(1)^2 - 2 = 2 is prime and prime(1)^2 + 2 = 6 is composite.
%p A173472 isA173472 := proc(n) local p,pplus,pmin ; p := ithprime(n) ; pmin := isprime(p^2-2) ; pplus := isprime(p^2+2) ; if pmin <> pplus then return true; else return false; end if; end proc: for n from 1 to 300 do if isA173472(n) then printf("%d,",n) ; end if; end do ; # _R. J. Mathar_, Feb 21 2010
%Y A173472 Cf. A137291.
%K A173472 nonn,less
%O A173472 1,2
%A A173472 _Juri-Stepan Gerasimov_, Feb 19 2010
%E A173472 More terms from _R. J. Mathar_, Feb 21 2010
%E A173472 Edited by _Charles R Greathouse IV_, Mar 24 2010