cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173475 Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=0..n} A051179(j), read by rows.

This page as a plain text file.
%I A173475 #8 Apr 26 2021 02:34:00
%S A173475 1,1,1,1,5,1,1,85,85,1,1,21845,371365,21845,1,1,1431655765,
%T A173475 6254904037285,6254904037285,1431655765,1,1,6148914691236517205,
%U A173475 1760625833240390967011987365,452480839142780478522080752805,1760625833240390967011987365,6148914691236517205,1
%N A173475 Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=0..n} A051179(j), read by rows.
%H A173475 G. C. Greubel, <a href="/A173475/b173475.txt">Rows n = 0..10 of the triangle, flattened</a>
%F A173475 T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j,0,n} A051179(j).
%e A173475 Triangle begins as:
%e A173475   1;
%e A173475   1,          1;
%e A173475   1,          5,             1;
%e A173475   1,         85,            85,             1;
%e A173475   1,      21845,        371365,         21845,          1;
%e A173475   1, 1431655765, 6254904037285, 6254904037285, 1431655765, 1;
%t A173475 c[n_]:= Product[2^(2^j) - 1, {j,0,n}];
%t A173475 T[n_, k_]:= c[n]/(c[k]*c[n-k]);
%t A173475 Table[T[n, k], {n,0,8}, {k,0,n}]//Flatten
%o A173475 (Sage)
%o A173475 @CachedFunction
%o A173475 def c(n): return product( 2^(2^j) -1 for j in (0..n) )
%o A173475 def T(n,k): return c(n)/(c(k)*c(n-k))
%o A173475 flatten([[T(n,k) for k in (0..n)] for n in (0..8)]) # _G. C. Greubel_, Apr 26 2021
%Y A173475 Cf. A051179.
%K A173475 nonn,tabl,less
%O A173475 0,5
%A A173475 _Roger L. Bagula_, Feb 19 2010
%E A173475 Edited by _G. C. Greubel_, Apr 26 2021